October  2011, 16(3): 819-833. doi: 10.3934/dcdsb.2011.16.819

Front propagation in diffusion-aggregation models with bi-stable reaction

1. 

Research Mathematical Institute, Voronezh State University, 394006 Voronezh, Russian Federation

2. 

Department of Pure and Applied Mathematics, University of Modena and Reggio Emilia, 41125 Reggio Emilia, Italy

Received  March 2010 Revised  January 2011 Published  June 2011

In this paper, necessary and sufficient conditions are given for the existence of travelling wave solutions of the reaction-diffusion-aggregation equation

$v_\tau=(D(v)v_x)_{x}+f(v), $

where the diffusivity $D$ changes sign twice in the interval $(0,1)$ (from positive to negative and again to positive) and the reaction $f$ is bi-stable. We show that classical travelling waves with decreasing profile do exist for a single admissible value of their speed of propagation which can be either positive or negative, according to the behavior of $f$ and $D$. An example is given, illustrating the employed techniques. The results are then generalized to a diffusivity $D$ with $2n$ sign changes.

Citation: Mikhail Kuzmin, Stefano Ruggerini. Front propagation in diffusion-aggregation models with bi-stable reaction. Discrete and Continuous Dynamical Systems - B, 2011, 16 (3) : 819-833. doi: 10.3934/dcdsb.2011.16.819
References:
[1]

W. C. Allee, "Animal Aggregations," University of Chicago Press, Chicago, 1931.

[2]

W. Alt, Models for mutual attraction and aggregation of motile individuals, in "Lecture Notes in Biomathematics," 57, Springer-Verlag, (1985), 33-38.

[3]

D. G. Aronson, The role of diffusion in mathematical population biology: Skellam revisited, in "Lecture Notes in Biomathematics," 57, Springer-Verlag, (1985), 2-6.

[4]

V. Capasso, D. Morale and K. Oelschläger, An interacting particle system modelling aggregation behaviour: from individuals to populations, J. Math. Biology, 50 (2005), 49-66. doi: 10.1007/s00285-004-0279-1.

[5]

L. Ferracuti, C. Marcelli and F. Papalini, Travelling waves in some reaction-diffusion-aggregation equations, Adv. Dyn. Syst. Appl., 4 (2009), 19-33.

[6]

B. H. Gilding and R. Kersner, "Travelling Waves in Nonlinear Diffusion-Convection-Reaction," Birkhäuser Verlag, Basel, 2004.

[7]

P. K. Maini, L. Malaguti, C. Marcelli and S. Matucci, Diffusion-aggregation processes with mono-stable reaction terms, Discrete Continuous Dynam. Systems - B, 6 (2006), 1175-1189.

[8]

P. K. Maini, L. Malaguti, C. Marcelli and S. Matucci, Aggregative movement and front propagation for bi-stable population models, Math. Models and Methods in Appl. Sciences, 17 (2007), 1351-1368. doi: 10.1142/S0218202507002303.

[9]

L. Malaguti and C. Marcelli, Sharp profiles in degenerate and doubly-degenerate Fisher-KPP equations, J. Diff. Eqs, 195 (2003), 471-496. doi: 10.1016/j.jde.2003.06.005.

[10]

Víctor Padrón, Effect of aggregation on population recovery modeled by a forward-backward pseudoparabolic equation, Trans. of the American Math. Society, 7 (2004), 2737-2756.

[11]

Peter Turchin, Population consequences of aggregative movements, The Journal of Animal Ecology, 1 (1989), 75-100. doi: 10.2307/4987.

show all references

References:
[1]

W. C. Allee, "Animal Aggregations," University of Chicago Press, Chicago, 1931.

[2]

W. Alt, Models for mutual attraction and aggregation of motile individuals, in "Lecture Notes in Biomathematics," 57, Springer-Verlag, (1985), 33-38.

[3]

D. G. Aronson, The role of diffusion in mathematical population biology: Skellam revisited, in "Lecture Notes in Biomathematics," 57, Springer-Verlag, (1985), 2-6.

[4]

V. Capasso, D. Morale and K. Oelschläger, An interacting particle system modelling aggregation behaviour: from individuals to populations, J. Math. Biology, 50 (2005), 49-66. doi: 10.1007/s00285-004-0279-1.

[5]

L. Ferracuti, C. Marcelli and F. Papalini, Travelling waves in some reaction-diffusion-aggregation equations, Adv. Dyn. Syst. Appl., 4 (2009), 19-33.

[6]

B. H. Gilding and R. Kersner, "Travelling Waves in Nonlinear Diffusion-Convection-Reaction," Birkhäuser Verlag, Basel, 2004.

[7]

P. K. Maini, L. Malaguti, C. Marcelli and S. Matucci, Diffusion-aggregation processes with mono-stable reaction terms, Discrete Continuous Dynam. Systems - B, 6 (2006), 1175-1189.

[8]

P. K. Maini, L. Malaguti, C. Marcelli and S. Matucci, Aggregative movement and front propagation for bi-stable population models, Math. Models and Methods in Appl. Sciences, 17 (2007), 1351-1368. doi: 10.1142/S0218202507002303.

[9]

L. Malaguti and C. Marcelli, Sharp profiles in degenerate and doubly-degenerate Fisher-KPP equations, J. Diff. Eqs, 195 (2003), 471-496. doi: 10.1016/j.jde.2003.06.005.

[10]

Víctor Padrón, Effect of aggregation on population recovery modeled by a forward-backward pseudoparabolic equation, Trans. of the American Math. Society, 7 (2004), 2737-2756.

[11]

Peter Turchin, Population consequences of aggregative movements, The Journal of Animal Ecology, 1 (1989), 75-100. doi: 10.2307/4987.

[1]

Yuming Paul Zhang. On a class of diffusion-aggregation equations. Discrete and Continuous Dynamical Systems, 2020, 40 (2) : 907-932. doi: 10.3934/dcds.2020066

[2]

Philip K. Maini, Luisa Malaguti, Cristina Marcelli, Serena Matucci. Diffusion-aggregation processes with mono-stable reaction terms. Discrete and Continuous Dynamical Systems - B, 2006, 6 (5) : 1175-1189. doi: 10.3934/dcdsb.2006.6.1175

[3]

Wei Wang, Wanbiao Ma. Global dynamics and travelling wave solutions for a class of non-cooperative reaction-diffusion systems with nonlocal infections. Discrete and Continuous Dynamical Systems - B, 2018, 23 (8) : 3213-3235. doi: 10.3934/dcdsb.2018242

[4]

Antoine Benoit. Finite speed of propagation for mixed problems in the $WR$ class. Communications on Pure and Applied Analysis, 2014, 13 (6) : 2351-2358. doi: 10.3934/cpaa.2014.13.2351

[5]

Lihua Min, Xiaoping Yang. Finite speed of propagation and algebraic time decay of solutions to a generalized thin film equation. Communications on Pure and Applied Analysis, 2014, 13 (2) : 543-566. doi: 10.3934/cpaa.2014.13.543

[6]

Jean-Daniel Djida, Juan J. Nieto, Iván Area. Nonlocal time-porous medium equation: Weak solutions and finite speed of propagation. Discrete and Continuous Dynamical Systems - B, 2019, 24 (8) : 4031-4053. doi: 10.3934/dcdsb.2019049

[7]

Henri Berestycki, Luca Rossi. Reaction-diffusion equations for population dynamics with forced speed I - The case of the whole space. Discrete and Continuous Dynamical Systems, 2008, 21 (1) : 41-67. doi: 10.3934/dcds.2008.21.41

[8]

Henri Berestycki, Luca Rossi. Reaction-diffusion equations for population dynamics with forced speed II - cylindrical-type domains. Discrete and Continuous Dynamical Systems, 2009, 25 (1) : 19-61. doi: 10.3934/dcds.2009.25.19

[9]

Yong Zhou, Zhengguang Guo. Blow up and propagation speed of solutions to the DGH equation. Discrete and Continuous Dynamical Systems - B, 2009, 12 (3) : 657-670. doi: 10.3934/dcdsb.2009.12.657

[10]

S. Bonafede, G. R. Cirmi, A.F. Tedeev. Finite speed of propagation for the porous media equation with lower order terms. Discrete and Continuous Dynamical Systems, 2000, 6 (2) : 305-314. doi: 10.3934/dcds.2000.6.305

[11]

Shangbing Ai, Wenzhang Huang, Zhi-An Wang. Reaction, diffusion and chemotaxis in wave propagation. Discrete and Continuous Dynamical Systems - B, 2015, 20 (1) : 1-21. doi: 10.3934/dcdsb.2015.20.1

[12]

L. M. Abia, O. Angulo, J.C. López-Marcos. Size-structured population dynamics models and their numerical solutions. Discrete and Continuous Dynamical Systems - B, 2004, 4 (4) : 1203-1222. doi: 10.3934/dcdsb.2004.4.1203

[13]

Bang-Sheng Han, Zhi-Cheng Wang. Traveling wave solutions in a nonlocal reaction-diffusion population model. Communications on Pure and Applied Analysis, 2016, 15 (3) : 1057-1076. doi: 10.3934/cpaa.2016.15.1057

[14]

Tiberiu Harko, Man Kwong Mak. Travelling wave solutions of the reaction-diffusion mathematical model of glioblastoma growth: An Abel equation based approach. Mathematical Biosciences & Engineering, 2015, 12 (1) : 41-69. doi: 10.3934/mbe.2015.12.41

[15]

Chiun-Chuan Chen, Li-Chang Hung, Masayasu Mimura, Daishin Ueyama. Exact travelling wave solutions of three-species competition--diffusion systems. Discrete and Continuous Dynamical Systems - B, 2012, 17 (8) : 2653-2669. doi: 10.3934/dcdsb.2012.17.2653

[16]

Jong-Shenq Guo, Ken-Ichi Nakamura, Toshiko Ogiwara, Chang-Hong Wu. The sign of traveling wave speed in bistable dynamics. Discrete and Continuous Dynamical Systems, 2020, 40 (6) : 3451-3466. doi: 10.3934/dcds.2020047

[17]

R. Kowalczyk, A. Gamba, L. Preziosi. On the stability of homogeneous solutions to some aggregation models. Discrete and Continuous Dynamical Systems - B, 2004, 4 (1) : 203-220. doi: 10.3934/dcdsb.2004.4.203

[18]

Narcisa Apreutesei, Arnaud Ducrot, Vitaly Volpert. Travelling waves for integro-differential equations in population dynamics. Discrete and Continuous Dynamical Systems - B, 2009, 11 (3) : 541-561. doi: 10.3934/dcdsb.2009.11.541

[19]

Anouar El Harrak, Hatim Tayeq, Amal Bergam. A posteriori error estimates for a finite volume scheme applied to a nonlinear reaction-diffusion equation in population dynamics. Discrete and Continuous Dynamical Systems - S, 2021, 14 (7) : 2183-2197. doi: 10.3934/dcdss.2021062

[20]

Andrea L. Bertozzi, Dejan Slepcev. Existence and uniqueness of solutions to an aggregation equation with degenerate diffusion. Communications on Pure and Applied Analysis, 2010, 9 (6) : 1617-1637. doi: 10.3934/cpaa.2010.9.1617

2021 Impact Factor: 1.497

Metrics

  • PDF downloads (106)
  • HTML views (0)
  • Cited by (5)

Other articles
by authors

[Back to Top]