October  2011, 16(3): 835-866. doi: 10.3934/dcdsb.2011.16.835

Robustness of signaling gradient in drosophila wing imaginal disc

1. 

Zhou Pei-Yuan Center for Applied Mathematics, MOE Key Laboratory of Bioinformatics, Tsinghua University, Beijing 100084

2. 

Department of Mathematics, Center for Complex Biological Systems, University of California, Irvine, California, 92697-3875

3. 

Department of Developmental and Cell Biology, Center for Complex Biological Systems, University of California, Irvine, California, 92697-2300, United States

4. 

Department of Mathematics, Center for Complex Biological Systems & Center for Mathematical and Computational Biology, University of California, Irvine, California, 92697-3875, United States

Received  July 2010 Revised  October 2010 Published  June 2011

Quasi-stable gradients of signaling protein molecules (known as morphogens or ligands) bound to cell receptors are known to be responsible for differential cell signaling and gene expressions. From these follow different stable cell fates and visually patterned tissues in biological development. Recent studies have shown that the relevant basic biological processes yield gradients that are sensitive to small changes in system characteristics (such as expression level of morphogens or receptors) or environmental conditions (such as temperature changes). Additional biological activities must play an important role in the high level of robustness observed in embryonic patterning for example. It is natural to attribute observed robustness to various type of feedback control mechanisms. However, our own simulation studies have shown that feedback control is neither necessary nor sufficient for robustness of the morphogen decapentaplegic (Dpp) gradient in wing imaginal disc of Drosophilas. Furthermore, robustness can be achieved by substantial binding of the signaling morphogen Dpp with nonsignaling cell surface bound molecules (such as heparan sulfate proteoglygans) and degrading the resulting complexes at a sufficiently rapid rate. The present work provides a theoretical basis for the results of our numerical simulation studies.
Citation: Jinzhi Lei, Frederic Y. M. Wan, Arthur D. Lander, Qing Nie. Robustness of signaling gradient in drosophila wing imaginal disc. Discrete and Continuous Dynamical Systems - B, 2011, 16 (3) : 835-866. doi: 10.3934/dcdsb.2011.16.835
References:
[1]

G. H. Baeg and N. Perrimon, Functional binding of secreted molecules to heparan sulfate proteoglycans in Drosophila, Curr. Opin. Cell. Biol., 12 (2000), 575-580. doi: 10.1016/S0955-0674(00)00134-4.

[2]

G. H. Baeg, E. M. Selva, R. M. Goodman, R. Dasgupta and N. Perrimon, The Wingless morphogen gradient is established by the cooperative action of Frizzled and Heparan Sulfate Proteoglycan receptors, Dev. Biol., 276 (2004), 89-100. doi: 10.1016/j.ydbio.2004.08.023.

[3]

T. Y. Belenkaya, C. Han, D. Yan, R. J. Opoka, M. Khodoun, H. Liu, and X. Lin, Drosophila Dpp morphogen movement is independent of dynamin-mediated endocytosis but regulated by the glypican members of heparan sulfate proteoglycans, Cell, 119 (2004), 231-244. doi: 10.1016/j.cell.2004.09.031.

[4]

D. J. Bornemann, J. E. Duncan, W. Staatz, S. Seleck and R. Warrior, Abrogation of heparan sulfate synthesis in Drosophila disrupts the Wingless, hedgehog and Decapentaplegic signaling pathways, Development, 131 (2004), 1927-1938. doi: 10.1242/dev.01061.

[5]

K. M. Cadigan, M. P. Fish, E. J. Rulifson and R. Nusse, Wingless repression of Drosophila frizzled 2 expression shapes the Wingless morphogen gradient in the wing, Cell, 93 (1998), 767-777. doi: 10.1016/S0092-8674(00)81438-5.

[6]

A. Eldar, R. Dorfman, D. Weiss, H. Ashe, B. Z. Shilo and N. Barkai, Robustness of MmP morphogen gradient in Drosophila embryonic patterning, Nature, 419 (2002), 304-308. doi: 10.1038/nature01061.

[7]

A. Eldar, D. Rosin, B. Z. Shilo and N. Barkai, Self-enhanced ligand degradation underlies robustness of morphogen graients, Dev. Cell, 5 (2003), 635-646. doi: 10.1016/S1534-5807(03)00292-2.

[8]

A. Eldar, B. Z. Shilo and N. Barkai, Elucidating mechanisms underlying robustness of morphogen gradients, Curr. Opin. Genet. Dev., 14 (2004), 435-439.

[9]

E. V. Entchev, A. Schwabedissen and M. Gonzá lez-Gaitán, Grandient formation of the TGF-$\beta$ homolog dpp, Cell, 103 (2000), 981-991. doi: 10.1016/S0092-8674(00)00200-2.

[10]

M. Fujise, S. Takeo, K. Kamimura, T. Matsuo, T. Aigaki, S. Izumi and H. Nakato, Dally regulates Dpp morphogen gradient formation in the Drosophila wing, Development, 130 (2003), 1515-1522. doi: 10.1242/dev.00379.

[11]

Y. Funakoshi, M. Minami and T. Tabata, Mtv shapes the activity gradient of the Dpp morphogen through regulation of thickveins, Development, 128 (2001), 67-74.

[12]

C. Han, T. Y. Belenkaya, M. Khodoun, M. Tauchi, X. D. Lin and X. H. Lin, Distinct and collaborative roles of Drosophila EXT family proteins in morphogen signalling and gradient formation, Development, 131 (2004), 1563-1575. doi: 10.1242/dev.01051.

[13]

B. Houchmandzadeh, E. Wieschaus and S. Leibler, Establishment of developmental precision and proportions in the early Drosophila embryo, Nature, 415 (2002), 798-802.

[14]

N. T. Ingolia, Topology and robustnessin the Drosophila segment polarity network, PLoS Biol., 2(2004), 0805-0815.

[15]

M. Khong, F. Y. M. Wan, Negative feedback in morphogen gradients, Frontiers of Applied Mathematics (Proc. of 2nd International Symposium, June, 2006, Beijing), Ed. D.-Y. Hsieh, M. Zhang and W. Sun, World Scientific, NJ, 2007, 29-51.

[16]

C. A. Kirkpatrick, B. D. Dimitroff, J. M. Rawson and S. B. Selleck, Spatial regulation of Wingless morphogen distribution and signaling by Dally-like protein, Dev. Cell, 7 (2004), 513-523. doi: 10.1016/j.devcel.2004.08.004.

[17]

J. Kreuger, L. Perez, A. J. Giraldez and S. M. Choen, Opposing activities of Dally-like glypican at high and low levels of Wingless morphogen activity, Dev. Cell, 7 (2004), 503-512. doi: 10.1016/j.devcel.2004.08.005.

[18]

A. D. Lander, Q. Nie and F. Y. M. Wan, Do morphogen gradients arise by diffusion? Dev. Cell, 2 (2002), 785-796. doi: 10.1016/S1534-5807(02)00179-X.

[19]

A. D. Lander, Q. Nie and F. Y. M. Wan, Spatially distributed morphogen production and morphogen gradient formation, Math. Biosci. & Eng., 2 (2005), 239-262.

[20]

A. D. Lander, F. Y. M. Wan and Q. Nie, Multiple paths to morphogen gradient robustness, preprint, (2005).

[21]

A. D. Lander, Q. Nie, B. Vargas and F. Y. M. Wan, Size-normalized robustness of Dpp gradient in drosophila wing imaginal disc, J. Mech. Mat. Struct. Accepted, (2010).

[22]

T. Lecuit and S. M. Cohen, Dpp receptor levels contribute to shaping the Dpp morphogen gradient in the Drosophila wing imaginal disc, Development, 125 (1998), 4901-4907.

[23]

J. Lei, Mathematical model of the Dpp gradient formation in drosophila wing imaginal disc, Chinese Sci. Bull., 55 (2010), 984-991. doi: 10.1360/972009-1522.

[24]

J. Lei and Y. Song, Mathematical model of the formation of morphogen gradients through membrane-associated non-receptors, Bull. Math. Biol., 72 (2010), 805-829. doi: 10.1007/s11538-009-9470-2.

[25]

X. Lin, Functions of heparan sulfate proteoglygans in cell signaling during development, Development, 131 (2004), 6009-6021. doi: doi:10.1242/dev.01522.

[26]

M. Renardy and R. C. Rogers, "An Introduction to Partial Differential Equation,'' Springer, Berlin, 2004.

[27]

D. H. Sattinger, Monotone methods in nonlinear elliptic and parabolic boundary value problems, Indiana University Math. J., 21 (1972), 979-1000. doi: 10.1512/iumj.1972.21.21079.

[28]

M. Strigini and S. M. Cohen, Wingless gradient formation in the Drosophila wing, Curr. Biol., 10 (2000), 293-300. doi: 10.1016/S0960-9822(00)00378-X.

[29]

A. A. Teleman and S. M. Cohen, Dpp Gradient formation in the Drosophila wing imaginal disc, Cell, 103 (2000), 971-980. doi: 10.1016/S0092-8674(00)00199-9.

[30]

I. The, Y. Bellaiche and N. Perrimon, Hedgehog movement is regulated through tout velu-dependent synthesis of a heparan sulfate proteglycan, Mol. Cell, 4 (1999), 633-639. doi: 10.1016/S1097-2765(00)80214-2.

[31]

G. von Dassow, E. Meir, E. M. Munro and G. M. Odell, The segment polarity network is a robust developmental module, Nature, 406 (2000), 188-192. doi: 10.1038/35018085.

[32]

G. von Dassow, and G. M. Odell, Design and constraints of the Drosophila segment polarity module: robust spatial patterning emerges from intertwined cell state switches, J. Exp. Zool., 294 (2002), 179-215. doi: 10.1002/jez.10144.

show all references

References:
[1]

G. H. Baeg and N. Perrimon, Functional binding of secreted molecules to heparan sulfate proteoglycans in Drosophila, Curr. Opin. Cell. Biol., 12 (2000), 575-580. doi: 10.1016/S0955-0674(00)00134-4.

[2]

G. H. Baeg, E. M. Selva, R. M. Goodman, R. Dasgupta and N. Perrimon, The Wingless morphogen gradient is established by the cooperative action of Frizzled and Heparan Sulfate Proteoglycan receptors, Dev. Biol., 276 (2004), 89-100. doi: 10.1016/j.ydbio.2004.08.023.

[3]

T. Y. Belenkaya, C. Han, D. Yan, R. J. Opoka, M. Khodoun, H. Liu, and X. Lin, Drosophila Dpp morphogen movement is independent of dynamin-mediated endocytosis but regulated by the glypican members of heparan sulfate proteoglycans, Cell, 119 (2004), 231-244. doi: 10.1016/j.cell.2004.09.031.

[4]

D. J. Bornemann, J. E. Duncan, W. Staatz, S. Seleck and R. Warrior, Abrogation of heparan sulfate synthesis in Drosophila disrupts the Wingless, hedgehog and Decapentaplegic signaling pathways, Development, 131 (2004), 1927-1938. doi: 10.1242/dev.01061.

[5]

K. M. Cadigan, M. P. Fish, E. J. Rulifson and R. Nusse, Wingless repression of Drosophila frizzled 2 expression shapes the Wingless morphogen gradient in the wing, Cell, 93 (1998), 767-777. doi: 10.1016/S0092-8674(00)81438-5.

[6]

A. Eldar, R. Dorfman, D. Weiss, H. Ashe, B. Z. Shilo and N. Barkai, Robustness of MmP morphogen gradient in Drosophila embryonic patterning, Nature, 419 (2002), 304-308. doi: 10.1038/nature01061.

[7]

A. Eldar, D. Rosin, B. Z. Shilo and N. Barkai, Self-enhanced ligand degradation underlies robustness of morphogen graients, Dev. Cell, 5 (2003), 635-646. doi: 10.1016/S1534-5807(03)00292-2.

[8]

A. Eldar, B. Z. Shilo and N. Barkai, Elucidating mechanisms underlying robustness of morphogen gradients, Curr. Opin. Genet. Dev., 14 (2004), 435-439.

[9]

E. V. Entchev, A. Schwabedissen and M. Gonzá lez-Gaitán, Grandient formation of the TGF-$\beta$ homolog dpp, Cell, 103 (2000), 981-991. doi: 10.1016/S0092-8674(00)00200-2.

[10]

M. Fujise, S. Takeo, K. Kamimura, T. Matsuo, T. Aigaki, S. Izumi and H. Nakato, Dally regulates Dpp morphogen gradient formation in the Drosophila wing, Development, 130 (2003), 1515-1522. doi: 10.1242/dev.00379.

[11]

Y. Funakoshi, M. Minami and T. Tabata, Mtv shapes the activity gradient of the Dpp morphogen through regulation of thickveins, Development, 128 (2001), 67-74.

[12]

C. Han, T. Y. Belenkaya, M. Khodoun, M. Tauchi, X. D. Lin and X. H. Lin, Distinct and collaborative roles of Drosophila EXT family proteins in morphogen signalling and gradient formation, Development, 131 (2004), 1563-1575. doi: 10.1242/dev.01051.

[13]

B. Houchmandzadeh, E. Wieschaus and S. Leibler, Establishment of developmental precision and proportions in the early Drosophila embryo, Nature, 415 (2002), 798-802.

[14]

N. T. Ingolia, Topology and robustnessin the Drosophila segment polarity network, PLoS Biol., 2(2004), 0805-0815.

[15]

M. Khong, F. Y. M. Wan, Negative feedback in morphogen gradients, Frontiers of Applied Mathematics (Proc. of 2nd International Symposium, June, 2006, Beijing), Ed. D.-Y. Hsieh, M. Zhang and W. Sun, World Scientific, NJ, 2007, 29-51.

[16]

C. A. Kirkpatrick, B. D. Dimitroff, J. M. Rawson and S. B. Selleck, Spatial regulation of Wingless morphogen distribution and signaling by Dally-like protein, Dev. Cell, 7 (2004), 513-523. doi: 10.1016/j.devcel.2004.08.004.

[17]

J. Kreuger, L. Perez, A. J. Giraldez and S. M. Choen, Opposing activities of Dally-like glypican at high and low levels of Wingless morphogen activity, Dev. Cell, 7 (2004), 503-512. doi: 10.1016/j.devcel.2004.08.005.

[18]

A. D. Lander, Q. Nie and F. Y. M. Wan, Do morphogen gradients arise by diffusion? Dev. Cell, 2 (2002), 785-796. doi: 10.1016/S1534-5807(02)00179-X.

[19]

A. D. Lander, Q. Nie and F. Y. M. Wan, Spatially distributed morphogen production and morphogen gradient formation, Math. Biosci. & Eng., 2 (2005), 239-262.

[20]

A. D. Lander, F. Y. M. Wan and Q. Nie, Multiple paths to morphogen gradient robustness, preprint, (2005).

[21]

A. D. Lander, Q. Nie, B. Vargas and F. Y. M. Wan, Size-normalized robustness of Dpp gradient in drosophila wing imaginal disc, J. Mech. Mat. Struct. Accepted, (2010).

[22]

T. Lecuit and S. M. Cohen, Dpp receptor levels contribute to shaping the Dpp morphogen gradient in the Drosophila wing imaginal disc, Development, 125 (1998), 4901-4907.

[23]

J. Lei, Mathematical model of the Dpp gradient formation in drosophila wing imaginal disc, Chinese Sci. Bull., 55 (2010), 984-991. doi: 10.1360/972009-1522.

[24]

J. Lei and Y. Song, Mathematical model of the formation of morphogen gradients through membrane-associated non-receptors, Bull. Math. Biol., 72 (2010), 805-829. doi: 10.1007/s11538-009-9470-2.

[25]

X. Lin, Functions of heparan sulfate proteoglygans in cell signaling during development, Development, 131 (2004), 6009-6021. doi: doi:10.1242/dev.01522.

[26]

M. Renardy and R. C. Rogers, "An Introduction to Partial Differential Equation,'' Springer, Berlin, 2004.

[27]

D. H. Sattinger, Monotone methods in nonlinear elliptic and parabolic boundary value problems, Indiana University Math. J., 21 (1972), 979-1000. doi: 10.1512/iumj.1972.21.21079.

[28]

M. Strigini and S. M. Cohen, Wingless gradient formation in the Drosophila wing, Curr. Biol., 10 (2000), 293-300. doi: 10.1016/S0960-9822(00)00378-X.

[29]

A. A. Teleman and S. M. Cohen, Dpp Gradient formation in the Drosophila wing imaginal disc, Cell, 103 (2000), 971-980. doi: 10.1016/S0092-8674(00)00199-9.

[30]

I. The, Y. Bellaiche and N. Perrimon, Hedgehog movement is regulated through tout velu-dependent synthesis of a heparan sulfate proteglycan, Mol. Cell, 4 (1999), 633-639. doi: 10.1016/S1097-2765(00)80214-2.

[31]

G. von Dassow, E. Meir, E. M. Munro and G. M. Odell, The segment polarity network is a robust developmental module, Nature, 406 (2000), 188-192. doi: 10.1038/35018085.

[32]

G. von Dassow, and G. M. Odell, Design and constraints of the Drosophila segment polarity module: robust spatial patterning emerges from intertwined cell state switches, J. Exp. Zool., 294 (2002), 179-215. doi: 10.1002/jez.10144.

[1]

Wing-Cheong Lo. Morphogen gradient with expansion-repression mechanism: Steady-state and robustness studies. Discrete and Continuous Dynamical Systems - B, 2014, 19 (3) : 775-787. doi: 10.3934/dcdsb.2014.19.775

[2]

Arthur D. Lander, Qing Nie, Frederic Y. M. Wan. Spatially Distributed Morphogen Production and Morphogen Gradient Formation. Mathematical Biosciences & Engineering, 2005, 2 (2) : 239-262. doi: 10.3934/mbe.2005.2.239

[3]

Patricio Cerda, Leonelo Iturriaga, Sebastián Lorca, Pedro Ubilla. Positive radial solutions of a nonlinear boundary value problem. Communications on Pure and Applied Analysis, 2018, 17 (5) : 1765-1783. doi: 10.3934/cpaa.2018084

[4]

Gen Nakamura, Michiyuki Watanabe. An inverse boundary value problem for a nonlinear wave equation. Inverse Problems and Imaging, 2008, 2 (1) : 121-131. doi: 10.3934/ipi.2008.2.121

[5]

Gang Bao. Mathematical modeling of nonlinear diffracvtive optics. Conference Publications, 1998, 1998 (Special) : 89-99. doi: 10.3934/proc.1998.1998.89

[6]

John R. Graef, Lingju Kong, Bo Yang. Positive solutions of a nonlinear higher order boundary-value problem. Conference Publications, 2009, 2009 (Special) : 276-285. doi: 10.3934/proc.2009.2009.276

[7]

Kateryna Marynets. Study of a nonlinear boundary-value problem of geophysical relevance. Discrete and Continuous Dynamical Systems, 2019, 39 (8) : 4771-4781. doi: 10.3934/dcds.2019194

[8]

Yu-Feng Sun, Zheng Zeng, Jie Song. Quasilinear iterative method for the boundary value problem of nonlinear fractional differential equation. Numerical Algebra, Control and Optimization, 2020, 10 (2) : 157-164. doi: 10.3934/naco.2019045

[9]

Eric R. Kaufmann. Existence and nonexistence of positive solutions for a nonlinear fractional boundary value problem. Conference Publications, 2009, 2009 (Special) : 416-423. doi: 10.3934/proc.2009.2009.416

[10]

Sunghan Kim, Ki-Ahm Lee, Henrik Shahgholian. Homogenization of the boundary value for the Dirichlet problem. Discrete and Continuous Dynamical Systems, 2019, 39 (12) : 6843-6864. doi: 10.3934/dcds.2019234

[11]

Hideo Takaoka. Energy transfer model and large periodic boundary value problem for the quintic nonlinear Schrödinger equations. Discrete and Continuous Dynamical Systems, 2020, 40 (11) : 6351-6378. doi: 10.3934/dcds.2020283

[12]

Lisa Hollman, P. J. McKenna. A conjecture on multiple solutions of a nonlinear elliptic boundary value problem: some numerical evidence. Communications on Pure and Applied Analysis, 2011, 10 (2) : 785-802. doi: 10.3934/cpaa.2011.10.785

[13]

VicenŢiu D. RǍdulescu, Somayeh Saiedinezhad. A nonlinear eigenvalue problem with $ p(x) $-growth and generalized Robin boundary value condition. Communications on Pure and Applied Analysis, 2018, 17 (1) : 39-52. doi: 10.3934/cpaa.2018003

[14]

Boling Guo, Jun Wu. Well-posedness of the initial-boundary value problem for the fourth-order nonlinear Schrödinger equation. Discrete and Continuous Dynamical Systems - B, 2022, 27 (7) : 3749-3778. doi: 10.3934/dcdsb.2021205

[15]

Jinzhi Lei, Dongyong Wang, You Song, Qing Nie, Frederic Y. M. Wan. Robustness of Morphogen gradients with "bucket brigade" transport through membrane-associated non-receptors. Discrete and Continuous Dynamical Systems - B, 2013, 18 (3) : 721-739. doi: 10.3934/dcdsb.2013.18.721

[16]

Rubén Caballero, Alexandre N. Carvalho, Pedro Marín-Rubio, José Valero. Robustness of dynamically gradient multivalued dynamical systems. Discrete and Continuous Dynamical Systems - B, 2019, 24 (3) : 1049-1077. doi: 10.3934/dcdsb.2019006

[17]

Felix Sadyrbaev. Nonlinear boundary value problems of the calculus of variations. Conference Publications, 2003, 2003 (Special) : 760-770. doi: 10.3934/proc.2003.2003.760

[18]

Feliz Minhós, Rui Carapinha. On higher order nonlinear impulsive boundary value problems. Conference Publications, 2015, 2015 (special) : 851-860. doi: 10.3934/proc.2015.0851

[19]

John V. Baxley, Philip T. Carroll. Nonlinear boundary value problems with multiple positive solutions. Conference Publications, 2003, 2003 (Special) : 83-90. doi: 10.3934/proc.2003.2003.83

[20]

Vladimir V. Varlamov. On the initial boundary value problem for the damped Boussinesq equation. Discrete and Continuous Dynamical Systems, 1998, 4 (3) : 431-444. doi: 10.3934/dcds.1998.4.431

2020 Impact Factor: 1.327

Metrics

  • PDF downloads (102)
  • HTML views (0)
  • Cited by (10)

[Back to Top]