October  2011, 16(3): 963-971. doi: 10.3934/dcdsb.2011.16.963

The flashing ratchet and unidirectional transport of matter

1. 

CMUC, Department of Mathematics, University of Coimbra, Apartado 3008, 3001-454 Coimbra, Portugal

Received  July 2010 Revised  March 2011 Published  June 2011

We study the flashing ratchet model of a Brownian motor, which consists in cyclical switching between the Fokker-Planck equation with an asymmetric ratchet-like potential and the pure diffusion equation. We show that the motor indeed performs unidirectional transport of mass, for proper parameters of the model, by analyzing the attractor of the problem and the stationary vector of a related Markov chain.
Citation: Dmitry Vorotnikov. The flashing ratchet and unidirectional transport of matter. Discrete and Continuous Dynamical Systems - B, 2011, 16 (3) : 963-971. doi: 10.3934/dcdsb.2011.16.963
References:
[1]

P. Amengual, A. Allison, R. Toral and D. Abbott, Discrete-time ratchets, the Fokker-Planck equation and Parrondo's paradox, Proc. Royal Society London A, 460 (2004), 2269-2284. doi: 10.1098/rspa.2004.1283.

[2]

R. D. Astumian, Thermodynamics and kinetics of a Brownian motor, Science, 276, (1997), 917-922. doi: 10.1126/science.276.5314.917.

[3]

D. Astumian and P. Hänggi, Brownian motors, Phys. Today, 55 (2002), 33-39. doi: 10.1063/1.1535005.

[4]

J. Dolbeault, D. Kinderlehrer and M. Kowalczyk, Remarks about the flashing rachet, in: "Partial Differential Equations and Inverse Problems," (2004), 167-175, Contemporary Mathematics, 362, American Mathematical Society, Providence, RI.

[5]

D. Heath, D. Kinderlehrer and M. Kowalczyk, Discrete and continuous ratchets: from coin toss to molecular motor, Discr. Cont. Dyn. Sys. Ser. B, 2 (2002), 1-15.

[6]

R. Jordan, D. Kinderlehrer and F. Otto, The variational formulation of the Fokker-Planck equation, SIAM J. Math. Anal., 29 (1998), 1-17. doi: 10.1137/S0036141096303359.

[7]

D. Kinderlehrer and M. Kowalczyk, Diffusion-mediated transport and the flashing ratchet, Arch. Rat. Mech. Anal., 161 (2002), 149-179. doi: 10.1007/s002050100173.

[8]

P. Palffy-Muhoray, T. Kosa and W. E, Brownian ratchets and the photoalignment of liquid crystals, Braz. J. Phys., 32 (2002), 552-563. doi: 10.1590/S0103-97332002000300016.

[9]

B. Perthame and P. E. Souganidis, Asymmetric potentials and motor effect: a large deviation approach, Arch. Rat. Mech. Anal., 193 (2009), 153-169. doi: 10.1007/s00205-008-0198-1.

[10]

A. D. Polyanin and A. V. Manzhirov, "Handbook of Mathematics for Engineers and Scientists," Chapman & Hall/CRC, Boca Raton, FL, 2007.

[11]

P. Reimann and P. Hänggi, Introduction to the physics of Brownian motors, Appl. Phys. A, 75 (2002), 169-178. doi: 10.1007/s003390201331.

show all references

References:
[1]

P. Amengual, A. Allison, R. Toral and D. Abbott, Discrete-time ratchets, the Fokker-Planck equation and Parrondo's paradox, Proc. Royal Society London A, 460 (2004), 2269-2284. doi: 10.1098/rspa.2004.1283.

[2]

R. D. Astumian, Thermodynamics and kinetics of a Brownian motor, Science, 276, (1997), 917-922. doi: 10.1126/science.276.5314.917.

[3]

D. Astumian and P. Hänggi, Brownian motors, Phys. Today, 55 (2002), 33-39. doi: 10.1063/1.1535005.

[4]

J. Dolbeault, D. Kinderlehrer and M. Kowalczyk, Remarks about the flashing rachet, in: "Partial Differential Equations and Inverse Problems," (2004), 167-175, Contemporary Mathematics, 362, American Mathematical Society, Providence, RI.

[5]

D. Heath, D. Kinderlehrer and M. Kowalczyk, Discrete and continuous ratchets: from coin toss to molecular motor, Discr. Cont. Dyn. Sys. Ser. B, 2 (2002), 1-15.

[6]

R. Jordan, D. Kinderlehrer and F. Otto, The variational formulation of the Fokker-Planck equation, SIAM J. Math. Anal., 29 (1998), 1-17. doi: 10.1137/S0036141096303359.

[7]

D. Kinderlehrer and M. Kowalczyk, Diffusion-mediated transport and the flashing ratchet, Arch. Rat. Mech. Anal., 161 (2002), 149-179. doi: 10.1007/s002050100173.

[8]

P. Palffy-Muhoray, T. Kosa and W. E, Brownian ratchets and the photoalignment of liquid crystals, Braz. J. Phys., 32 (2002), 552-563. doi: 10.1590/S0103-97332002000300016.

[9]

B. Perthame and P. E. Souganidis, Asymmetric potentials and motor effect: a large deviation approach, Arch. Rat. Mech. Anal., 193 (2009), 153-169. doi: 10.1007/s00205-008-0198-1.

[10]

A. D. Polyanin and A. V. Manzhirov, "Handbook of Mathematics for Engineers and Scientists," Chapman & Hall/CRC, Boca Raton, FL, 2007.

[11]

P. Reimann and P. Hänggi, Introduction to the physics of Brownian motors, Appl. Phys. A, 75 (2002), 169-178. doi: 10.1007/s003390201331.

[1]

Sylvain De Moor, Luis Miguel Rodrigues, Julien Vovelle. Invariant measures for a stochastic Fokker-Planck equation. Kinetic and Related Models, 2018, 11 (2) : 357-395. doi: 10.3934/krm.2018017

[2]

Marco Torregrossa, Giuseppe Toscani. On a Fokker-Planck equation for wealth distribution. Kinetic and Related Models, 2018, 11 (2) : 337-355. doi: 10.3934/krm.2018016

[3]

Michael Herty, Christian Jörres, Albert N. Sandjo. Optimization of a model Fokker-Planck equation. Kinetic and Related Models, 2012, 5 (3) : 485-503. doi: 10.3934/krm.2012.5.485

[4]

José Antonio Alcántara, Simone Calogero. On a relativistic Fokker-Planck equation in kinetic theory. Kinetic and Related Models, 2011, 4 (2) : 401-426. doi: 10.3934/krm.2011.4.401

[5]

Helge Dietert, Josephine Evans, Thomas Holding. Contraction in the Wasserstein metric for the kinetic Fokker-Planck equation on the torus. Kinetic and Related Models, 2018, 11 (6) : 1427-1441. doi: 10.3934/krm.2018056

[6]

Andreas Denner, Oliver Junge, Daniel Matthes. Computing coherent sets using the Fokker-Planck equation. Journal of Computational Dynamics, 2016, 3 (2) : 163-177. doi: 10.3934/jcd.2016008

[7]

Ioannis Markou. Hydrodynamic limit for a Fokker-Planck equation with coefficients in Sobolev spaces. Networks and Heterogeneous Media, 2017, 12 (4) : 683-705. doi: 10.3934/nhm.2017028

[8]

Manh Hong Duong, Yulong Lu. An operator splitting scheme for the fractional kinetic Fokker-Planck equation. Discrete and Continuous Dynamical Systems, 2019, 39 (10) : 5707-5727. doi: 10.3934/dcds.2019250

[9]

Giuseppe Toscani. A Rosenau-type approach to the approximation of the linear Fokker-Planck equation. Kinetic and Related Models, 2018, 11 (4) : 697-714. doi: 10.3934/krm.2018028

[10]

Shui-Nee Chow, Wuchen Li, Haomin Zhou. Entropy dissipation of Fokker-Planck equations on graphs. Discrete and Continuous Dynamical Systems, 2018, 38 (10) : 4929-4950. doi: 10.3934/dcds.2018215

[11]

Martin Burger, Ina Humpert, Jan-Frederik Pietschmann. On Fokker-Planck equations with In- and Outflow of Mass. Kinetic and Related Models, 2020, 13 (2) : 249-277. doi: 10.3934/krm.2020009

[12]

Michael Herty, Lorenzo Pareschi. Fokker-Planck asymptotics for traffic flow models. Kinetic and Related Models, 2010, 3 (1) : 165-179. doi: 10.3934/krm.2010.3.165

[13]

Ludovic Dan Lemle. $L^1(R^d,dx)$-uniqueness of weak solutions for the Fokker-Planck equation associated with a class of Dirichlet operators. Electronic Research Announcements, 2008, 15: 65-70. doi: 10.3934/era.2008.15.65

[14]

Joseph G. Conlon, André Schlichting. A non-local problem for the Fokker-Planck equation related to the Becker-Döring model. Discrete and Continuous Dynamical Systems, 2019, 39 (4) : 1821-1889. doi: 10.3934/dcds.2019079

[15]

Simon Plazotta. A BDF2-approach for the non-linear Fokker-Planck equation. Discrete and Continuous Dynamical Systems, 2019, 39 (5) : 2893-2913. doi: 10.3934/dcds.2019120

[16]

Patrick Cattiaux, Elissar Nasreddine, Marjolaine Puel. Diffusion limit for kinetic Fokker-Planck equation with heavy tails equilibria: The critical case. Kinetic and Related Models, 2019, 12 (4) : 727-748. doi: 10.3934/krm.2019028

[17]

Fabio Camilli, Serikbolsyn Duisembay, Qing Tang. Approximation of an optimal control problem for the time-fractional Fokker-Planck equation. Journal of Dynamics and Games, 2021, 8 (4) : 381-402. doi: 10.3934/jdg.2021013

[18]

Anton Arnold, Beatrice Signorello. Optimal non-symmetric Fokker-Planck equation for the convergence to a given equilibrium. Kinetic and Related Models, , () : -. doi: 10.3934/krm.2022009

[19]

Florian Schneider, Andreas Roth, Jochen Kall. First-order quarter-and mixed-moment realizability theory and Kershaw closures for a Fokker-Planck equation in two space dimensions. Kinetic and Related Models, 2017, 10 (4) : 1127-1161. doi: 10.3934/krm.2017044

[20]

Zeinab Karaki. Trend to the equilibrium for the Fokker-Planck system with an external magnetic field. Kinetic and Related Models, 2020, 13 (2) : 309-344. doi: 10.3934/krm.2020011

2020 Impact Factor: 1.327

Metrics

  • PDF downloads (93)
  • HTML views (0)
  • Cited by (2)

Other articles
by authors

[Back to Top]