\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

The flashing ratchet and unidirectional transport of matter

Abstract Related Papers Cited by
  • We study the flashing ratchet model of a Brownian motor, which consists in cyclical switching between the Fokker-Planck equation with an asymmetric ratchet-like potential and the pure diffusion equation. We show that the motor indeed performs unidirectional transport of mass, for proper parameters of the model, by analyzing the attractor of the problem and the stationary vector of a related Markov chain.
    Mathematics Subject Classification: 35B10, 35Q84, 60J10, 60J70, 82C70.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    P. Amengual, A. Allison, R. Toral and D. Abbott, Discrete-time ratchets, the Fokker-Planck equation and Parrondo's paradox, Proc. Royal Society London A, 460 (2004), 2269-2284.doi: 10.1098/rspa.2004.1283.

    [2]

    R. D. Astumian, Thermodynamics and kinetics of a Brownian motor, Science, 276, (1997), 917-922.doi: 10.1126/science.276.5314.917.

    [3]

    D. Astumian and P. Hänggi, Brownian motors, Phys. Today, 55 (2002), 33-39.doi: 10.1063/1.1535005.

    [4]

    J. Dolbeault, D. Kinderlehrer and M. Kowalczyk, Remarks about the flashing rachet, in: "Partial Differential Equations and Inverse Problems," (2004), 167-175, Contemporary Mathematics, 362, American Mathematical Society, Providence, RI.

    [5]

    D. Heath, D. Kinderlehrer and M. Kowalczyk, Discrete and continuous ratchets: from coin toss to molecular motor, Discr. Cont. Dyn. Sys. Ser. B, 2 (2002), 1-15.

    [6]

    R. Jordan, D. Kinderlehrer and F. Otto, The variational formulation of the Fokker-Planck equation, SIAM J. Math. Anal., 29 (1998), 1-17.doi: 10.1137/S0036141096303359.

    [7]

    D. Kinderlehrer and M. Kowalczyk, Diffusion-mediated transport and the flashing ratchet, Arch. Rat. Mech. Anal., 161 (2002), 149-179.doi: 10.1007/s002050100173.

    [8]

    P. Palffy-Muhoray, T. Kosa and W. E, Brownian ratchets and the photoalignment of liquid crystals, Braz. J. Phys., 32 (2002), 552-563.doi: 10.1590/S0103-97332002000300016.

    [9]

    B. Perthame and P. E. Souganidis, Asymmetric potentials and motor effect: a large deviation approach, Arch. Rat. Mech. Anal., 193 (2009), 153-169.doi: 10.1007/s00205-008-0198-1.

    [10]

    A. D. Polyanin and A. V. Manzhirov, "Handbook of Mathematics for Engineers and Scientists," Chapman & Hall/CRC, Boca Raton, FL, 2007.

    [11]

    P. Reimann and P. Hänggi, Introduction to the physics of Brownian motors, Appl. Phys. A, 75 (2002), 169-178.doi: 10.1007/s003390201331.

  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(117) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return