Citation: |
[1] |
P. Amengual, A. Allison, R. Toral and D. Abbott, Discrete-time ratchets, the Fokker-Planck equation and Parrondo's paradox, Proc. Royal Society London A, 460 (2004), 2269-2284.doi: 10.1098/rspa.2004.1283. |
[2] |
R. D. Astumian, Thermodynamics and kinetics of a Brownian motor, Science, 276, (1997), 917-922.doi: 10.1126/science.276.5314.917. |
[3] |
D. Astumian and P. Hänggi, Brownian motors, Phys. Today, 55 (2002), 33-39.doi: 10.1063/1.1535005. |
[4] |
J. Dolbeault, D. Kinderlehrer and M. Kowalczyk, Remarks about the flashing rachet, in: "Partial Differential Equations and Inverse Problems," (2004), 167-175, Contemporary Mathematics, 362, American Mathematical Society, Providence, RI. |
[5] |
D. Heath, D. Kinderlehrer and M. Kowalczyk, Discrete and continuous ratchets: from coin toss to molecular motor, Discr. Cont. Dyn. Sys. Ser. B, 2 (2002), 1-15. |
[6] |
R. Jordan, D. Kinderlehrer and F. Otto, The variational formulation of the Fokker-Planck equation, SIAM J. Math. Anal., 29 (1998), 1-17.doi: 10.1137/S0036141096303359. |
[7] |
D. Kinderlehrer and M. Kowalczyk, Diffusion-mediated transport and the flashing ratchet, Arch. Rat. Mech. Anal., 161 (2002), 149-179.doi: 10.1007/s002050100173. |
[8] |
P. Palffy-Muhoray, T. Kosa and W. E, Brownian ratchets and the photoalignment of liquid crystals, Braz. J. Phys., 32 (2002), 552-563.doi: 10.1590/S0103-97332002000300016. |
[9] |
B. Perthame and P. E. Souganidis, Asymmetric potentials and motor effect: a large deviation approach, Arch. Rat. Mech. Anal., 193 (2009), 153-169.doi: 10.1007/s00205-008-0198-1. |
[10] |
A. D. Polyanin and A. V. Manzhirov, "Handbook of Mathematics for Engineers and Scientists," Chapman & Hall/CRC, Boca Raton, FL, 2007. |
[11] |
P. Reimann and P. Hänggi, Introduction to the physics of Brownian motors, Appl. Phys. A, 75 (2002), 169-178.doi: 10.1007/s003390201331. |