October  2011, 16(3): 973-984. doi: 10.3934/dcdsb.2011.16.973

Existence of traveling wavefront for discrete bistable competition model

1. 

Department of Applied Mathematics, National Chung Hsing University, 250, Kuo Kuang Road, Taichung 402, Taiwan

Received  September 2010 Revised  January 2011 Published  June 2011

We study traveling wavefront solutions for a two-component competition system on a one-dimensional lattice. We combine the monotonic iteration method with a truncation to obtain the existence of the traveling wavefront solution.
Citation: Chin-Chin Wu. Existence of traveling wavefront for discrete bistable competition model. Discrete and Continuous Dynamical Systems - B, 2011, 16 (3) : 973-984. doi: 10.3934/dcdsb.2011.16.973
References:
[1]

X. Chen, J. S. Guo and C. C. Wu, Traveling waves in discrete periodic media for bistable dynamics, Arch. Rational Mech. Anal., 189 (2008), 189-236. doi: 10.1007/s00205-007-0103-3.

[2]

C. Conley and R. Gardner, An application of the generalized Morse index to traveling wave solutions of a competitive reaction diffusion model, Indiana Univ. Math. J., 33 (1984), 319-343. doi: 10.1512/iumj.1984.33.33018.

[3]

R. A. Gardner, Existence and stability of traveling wave solutions of competition models: a degree theoretic, J. Differential Equations, 44 (1982), 343-364. doi: 10.1016/0022-0396(82)90001-8.

[4]

J. S. Guo and C. H. Wu, Traveling wave front for a two-component lattice dynamical system arising in competition models, preprint.

[5]

J. S. Guo and C. H. Wu, Wave propagation for a two-component lattice dynamical system arising in strong competition models, J. Differential Equations, 250 (2011), 3504-3533. doi: 10.1016/j.jde.2010.12.004.

[6]

Y. Hosono, Singular perturbation analysis of travelling waves for diffusive Lotka-Volterra competitive models, Numerical and Applied Mathematics, Part II (Paris, 1988), Baltzer, Basel, (1989), 687-692.

[7]

Y. Hosono, The minimal speed of traveling fronts for a diffusive Lotka-Volterra competition model, Bulletin of Math. Biology, 60 (1998), 435-448. doi: 10.1006/bulm.1997.0008.

[8]

Y. Kan-on, Fisher wave fronts for the Lotka-Volterra competition model with diffusion, Nonlinear Anal., 28 (1997), 145-164.

[9]

J. P. Keener, Propagation and its failure in coupled systems of discrete excitable cells, SIAM J. Appl. Math., 47 (1987), 556-572. doi: 10.1137/0147038.

[10]

A. Okubo, P. K. Maini, M. H. Williamson and J. D. Murray, On the spatial spread of the grey squirrel in Britain, Proc. R. Soc. Lond. B, 238 (1989), 113-125. doi: 10.1098/rspb.1989.0070.

[11]

M. M. Tang and P. C. Fife, Propagating fronts for competing species equations with diffusion, Arch. Rational Mech. Anal., 73 (1980), 69-77. doi: 10.1007/BF00283257.

show all references

References:
[1]

X. Chen, J. S. Guo and C. C. Wu, Traveling waves in discrete periodic media for bistable dynamics, Arch. Rational Mech. Anal., 189 (2008), 189-236. doi: 10.1007/s00205-007-0103-3.

[2]

C. Conley and R. Gardner, An application of the generalized Morse index to traveling wave solutions of a competitive reaction diffusion model, Indiana Univ. Math. J., 33 (1984), 319-343. doi: 10.1512/iumj.1984.33.33018.

[3]

R. A. Gardner, Existence and stability of traveling wave solutions of competition models: a degree theoretic, J. Differential Equations, 44 (1982), 343-364. doi: 10.1016/0022-0396(82)90001-8.

[4]

J. S. Guo and C. H. Wu, Traveling wave front for a two-component lattice dynamical system arising in competition models, preprint.

[5]

J. S. Guo and C. H. Wu, Wave propagation for a two-component lattice dynamical system arising in strong competition models, J. Differential Equations, 250 (2011), 3504-3533. doi: 10.1016/j.jde.2010.12.004.

[6]

Y. Hosono, Singular perturbation analysis of travelling waves for diffusive Lotka-Volterra competitive models, Numerical and Applied Mathematics, Part II (Paris, 1988), Baltzer, Basel, (1989), 687-692.

[7]

Y. Hosono, The minimal speed of traveling fronts for a diffusive Lotka-Volterra competition model, Bulletin of Math. Biology, 60 (1998), 435-448. doi: 10.1006/bulm.1997.0008.

[8]

Y. Kan-on, Fisher wave fronts for the Lotka-Volterra competition model with diffusion, Nonlinear Anal., 28 (1997), 145-164.

[9]

J. P. Keener, Propagation and its failure in coupled systems of discrete excitable cells, SIAM J. Appl. Math., 47 (1987), 556-572. doi: 10.1137/0147038.

[10]

A. Okubo, P. K. Maini, M. H. Williamson and J. D. Murray, On the spatial spread of the grey squirrel in Britain, Proc. R. Soc. Lond. B, 238 (1989), 113-125. doi: 10.1098/rspb.1989.0070.

[11]

M. M. Tang and P. C. Fife, Propagating fronts for competing species equations with diffusion, Arch. Rational Mech. Anal., 73 (1980), 69-77. doi: 10.1007/BF00283257.

[1]

Jong-Shenq Guo, Ying-Chih Lin. Traveling wave solution for a lattice dynamical system with convolution type nonlinearity. Discrete and Continuous Dynamical Systems, 2012, 32 (1) : 101-124. doi: 10.3934/dcds.2012.32.101

[2]

Shi-Liang Wu, Cheng-Hsiung Hsu. Entire solutions with merging fronts to a bistable periodic lattice dynamical system. Discrete and Continuous Dynamical Systems, 2016, 36 (4) : 2329-2346. doi: 10.3934/dcds.2016.36.2329

[3]

Cui-Ping Cheng, Ruo-Fan An. Global stability of traveling wave fronts in a two-dimensional lattice dynamical system with global interaction. Electronic Research Archive, 2021, 29 (5) : 3535-3550. doi: 10.3934/era.2021051

[4]

Chin-Chin Wu. Monotonicity and uniqueness of wave profiles for a three components lattice dynamical system. Discrete and Continuous Dynamical Systems, 2017, 37 (5) : 2813-2827. doi: 10.3934/dcds.2017121

[5]

Liang Zhang, Bingtuan Li. Traveling wave solutions in an integro-differential competition model. Discrete and Continuous Dynamical Systems - B, 2012, 17 (1) : 417-428. doi: 10.3934/dcdsb.2012.17.417

[6]

Jong-Shenq Guo, Ken-Ichi Nakamura, Toshiko Ogiwara, Chang-Hong Wu. The sign of traveling wave speed in bistable dynamics. Discrete and Continuous Dynamical Systems, 2020, 40 (6) : 3451-3466. doi: 10.3934/dcds.2020047

[7]

Chiun-Chuan Chen, Ting-Yang Hsiao, Li-Chang Hung. Discrete N-barrier maximum principle for a lattice dynamical system arising in competition models. Discrete and Continuous Dynamical Systems, 2020, 40 (1) : 153-187. doi: 10.3934/dcds.2020007

[8]

Zhaoquan Xu, Jiying Ma. Monotonicity, asymptotics and uniqueness of travelling wave solution of a non-local delayed lattice dynamical system. Discrete and Continuous Dynamical Systems, 2015, 35 (10) : 5107-5131. doi: 10.3934/dcds.2015.35.5107

[9]

Bingtuan Li. Some remarks on traveling wave solutions in competition models. Discrete and Continuous Dynamical Systems - B, 2009, 12 (2) : 389-399. doi: 10.3934/dcdsb.2009.12.389

[10]

Fengxin Chen. Stability and uniqueness of traveling waves for system of nonlocal evolution equations with bistable nonlinearity. Discrete and Continuous Dynamical Systems, 2009, 24 (3) : 659-673. doi: 10.3934/dcds.2009.24.659

[11]

Jibin Li, Yi Zhang. On the traveling wave solutions for a nonlinear diffusion-convection equation: Dynamical system approach. Discrete and Continuous Dynamical Systems - B, 2010, 14 (3) : 1119-1138. doi: 10.3934/dcdsb.2010.14.1119

[12]

E. S. Van Vleck, Aijun Zhang. Competing interactions and traveling wave solutions in lattice differential equations. Communications on Pure and Applied Analysis, 2016, 15 (2) : 457-475. doi: 10.3934/cpaa.2016.15.457

[13]

Cheng-Hsiung Hsu, Jian-Jhong Lin. Stability analysis of traveling wave solutions for lattice reaction-diffusion equations. Discrete and Continuous Dynamical Systems - B, 2020, 25 (5) : 1757-1774. doi: 10.3934/dcdsb.2020001

[14]

Guo-Bao Zhang, Ruyun Ma, Xue-Shi Li. Traveling waves of a Lotka-Volterra strong competition system with nonlocal dispersal. Discrete and Continuous Dynamical Systems - B, 2018, 23 (2) : 587-608. doi: 10.3934/dcdsb.2018035

[15]

Xiaojie Hou, Yi Li. Traveling waves in a three species competition-cooperation system. Communications on Pure and Applied Analysis, 2017, 16 (4) : 1103-1120. doi: 10.3934/cpaa.2017053

[16]

Caibin Zeng, Xiaofang Lin, Jianhua Huang, Qigui Yang. Pathwise solution to rough stochastic lattice dynamical system driven by fractional noise. Communications on Pure and Applied Analysis, 2020, 19 (2) : 811-834. doi: 10.3934/cpaa.2020038

[17]

Fang-Di Dong, Wan-Tong Li, Li Zhang. Entire solutions in a two-dimensional nonlocal lattice dynamical system. Communications on Pure and Applied Analysis, 2018, 17 (6) : 2517-2545. doi: 10.3934/cpaa.2018120

[18]

Ahmed Y. Abdallah. Upper semicontinuity of the attractor for a second order lattice dynamical system. Discrete and Continuous Dynamical Systems - B, 2005, 5 (4) : 899-916. doi: 10.3934/dcdsb.2005.5.899

[19]

Jong-Shenq Guo, Chang-Hong Wu. Front propagation for a two-dimensional periodic monostable lattice dynamical system. Discrete and Continuous Dynamical Systems, 2010, 26 (1) : 197-223. doi: 10.3934/dcds.2010.26.197

[20]

Wenzhang Huang. Weakly coupled traveling waves for a model of growth and competition in a flow reactor. Mathematical Biosciences & Engineering, 2006, 3 (1) : 79-87. doi: 10.3934/mbe.2006.3.79

2021 Impact Factor: 1.497

Metrics

  • PDF downloads (71)
  • HTML views (0)
  • Cited by (2)

Other articles
by authors

[Back to Top]