# American Institute of Mathematical Sciences

January  2012, 17(1): 1-31. doi: 10.3934/dcdsb.2012.17.1

## Homogenization of a one-dimensional spectral problem for a singularly perturbed elliptic operator with Neumann boundary conditions

 1 CMAP, CNRS UMR 7641, École Polytechnique, Route de Saclay, Palaiseau F91128, France 2 Mathematical Institute, 24-29 St Giles’, OXFORD OX1 3LB, United Kingdom 3 Institut de Mathématiques, Université de Toulouse and CNRS, Université Paul Sabatier, 31062 Toulouse Cedex 9, France

Received  April 2011 Revised  July 2011 Published  October 2011

We study the asymptotic behavior of the first eigenvalue and eigenfunction of a one-dimensional periodic elliptic operator with Neumann boundary conditions. The second order elliptic equation is not self-adjoint and is singularly perturbed since, denoting by $\epsilon$ the period, each derivative is scaled by an $\epsilon$ factor. The main difficulty is that the domain size is not an integer multiple of the period. More precisely, for a domain of size $1$ and a given fractional part $0\leq\delta<1$, we consider a sequence of periods $\epsilon_n=1/(n+\delta)$ with $n\in \mathbb{N}$. In other words, the domain contains $n$ entire periodic cells and a fraction $\delta$ of a cell cut by the domain boundary. According to the value of the fractional part $\delta$, different asymptotic behaviors are possible: in some cases an homogenized limit is obtained, while in other cases the first eigenfunction is exponentially localized at one of the extreme points of the domain.
Citation: Grégoire Allaire, Yves Capdeboscq, Marjolaine Puel. Homogenization of a one-dimensional spectral problem for a singularly perturbed elliptic operator with Neumann boundary conditions. Discrete and Continuous Dynamical Systems - B, 2012, 17 (1) : 1-31. doi: 10.3934/dcdsb.2012.17.1
##### References:
 [1] G. Allaire and Y. Capdeboscq, Homogenization of a spectral problem in neutronic multigroup diffusion, Comput. Methods Appl. Mech. Engrg., 187 (2000), 91-117. doi: 10.1016/S0045-7825(99)00112-7. [2] G. Allaire and Y. Capdeboscq, Homogenization and localization for a 1-D eigenvalue problem in a periodic medium with an interface, Ann. Math. Pura Appl. (4), 181 (2002), 247-282. [3] G. Allaire and C. Conca, Bloch wave homogenization and spectral asymptotic analysis, J. Math. Pures et Appli. (9), 77 (1998), 153-208. doi: 10.1016/S0021-7824(98)80068-8. [4] G. Allaire and R. Orive, Homogenization of periodic non self-adjoint problems with large drift and potential, ESAIM COCV, 13 (2007), 735-749. doi: 10.1051/cocv:2007030. [5] G. Allaire and A. Piatnistki, Uniform spectral asymptotics for singularly perturbed locally periodic operators, Comm. PDE, 27 (2002), 705-725. doi: 10.1081/PDE-120002871. [6] A. Bensoussan, J.-L. Lions and G. Papanicolaou, "Asymptotic Analysis for Periodic Structures," North-Holland, Amsterdam, 1978. [7] Y. Capdeboscq, Homogenization of a diffusion equation with drift, C. R. Acad. Sci. Paris Série I Math., 327 (1998), 807-812. [8] G. Floquet, Sur les équations différentielles linéaires à coefficients périodiques, Ann. Sci. École Norm. Sup. Sér. (2), 12 (1883), 47-89. [9] T. Kato, "Perturbation Theory for Linear Operators," Second edition, Grundlehren der Mathematischen Wissenschaften, Band 132, Springer-Verlag, Berlin-New York, 1976. [10] S. Kozlov, Reducibility of quasiperiodic differential operators and averaging, Trudy Moskov. Mat. Obshch., 46 (1983), 99-123. [11] W. Magnus and S. Winkler, "Hill's Equation," Interscience Tracts in Pure and Applied Mathematics, No. 20, Interscience Publishers John Wiley & Sons, New York-London-Sydney, 1966. [12] S. Moskow and M. Vogelius, First-order corrections to the homogenised eigenvalues of a periodic composite medium. A convergence proof, Proc. Roy. Soc. Edinburgh Sect. A, 127 (1997), 1263-1299. [13] O. A. Oleinik, A. S. Shamaev and G. A. Yosifian, On the limiting behaviour of a sequence of operators defined in different Hilbert's spaces, Upsekhi Math. Nauk., 44 (1989), 157-158. [14] B. Perthame and P. Souganidis, Asymmetric potentials and motor effect: A homogenization approach, Ann. Inst. H. Poincaré Anal. Non Linéaire, 26 (2009), 2055-2071. doi: 10.1016/j.anihpc.2008.10.003. [15] F. Santosa and M. Vogelius, First-order corrections to the homogenized eigenvalues of a periodic composite medium, SIAM J. Appl. Math., 53 (1993), 1636-1668. doi: 10.1137/0153076. [16] M. Vanninathan, Homogenization of eigenvalue problems in perforated domains, Proc. Indian Acad. Sci. Math. Sci., 90 (1981), 239-271. doi: 10.1007/BF02838079.

show all references

##### References:
 [1] G. Allaire and Y. Capdeboscq, Homogenization of a spectral problem in neutronic multigroup diffusion, Comput. Methods Appl. Mech. Engrg., 187 (2000), 91-117. doi: 10.1016/S0045-7825(99)00112-7. [2] G. Allaire and Y. Capdeboscq, Homogenization and localization for a 1-D eigenvalue problem in a periodic medium with an interface, Ann. Math. Pura Appl. (4), 181 (2002), 247-282. [3] G. Allaire and C. Conca, Bloch wave homogenization and spectral asymptotic analysis, J. Math. Pures et Appli. (9), 77 (1998), 153-208. doi: 10.1016/S0021-7824(98)80068-8. [4] G. Allaire and R. Orive, Homogenization of periodic non self-adjoint problems with large drift and potential, ESAIM COCV, 13 (2007), 735-749. doi: 10.1051/cocv:2007030. [5] G. Allaire and A. Piatnistki, Uniform spectral asymptotics for singularly perturbed locally periodic operators, Comm. PDE, 27 (2002), 705-725. doi: 10.1081/PDE-120002871. [6] A. Bensoussan, J.-L. Lions and G. Papanicolaou, "Asymptotic Analysis for Periodic Structures," North-Holland, Amsterdam, 1978. [7] Y. Capdeboscq, Homogenization of a diffusion equation with drift, C. R. Acad. Sci. Paris Série I Math., 327 (1998), 807-812. [8] G. Floquet, Sur les équations différentielles linéaires à coefficients périodiques, Ann. Sci. École Norm. Sup. Sér. (2), 12 (1883), 47-89. [9] T. Kato, "Perturbation Theory for Linear Operators," Second edition, Grundlehren der Mathematischen Wissenschaften, Band 132, Springer-Verlag, Berlin-New York, 1976. [10] S. Kozlov, Reducibility of quasiperiodic differential operators and averaging, Trudy Moskov. Mat. Obshch., 46 (1983), 99-123. [11] W. Magnus and S. Winkler, "Hill's Equation," Interscience Tracts in Pure and Applied Mathematics, No. 20, Interscience Publishers John Wiley & Sons, New York-London-Sydney, 1966. [12] S. Moskow and M. Vogelius, First-order corrections to the homogenised eigenvalues of a periodic composite medium. A convergence proof, Proc. Roy. Soc. Edinburgh Sect. A, 127 (1997), 1263-1299. [13] O. A. Oleinik, A. S. Shamaev and G. A. Yosifian, On the limiting behaviour of a sequence of operators defined in different Hilbert's spaces, Upsekhi Math. Nauk., 44 (1989), 157-158. [14] B. Perthame and P. Souganidis, Asymmetric potentials and motor effect: A homogenization approach, Ann. Inst. H. Poincaré Anal. Non Linéaire, 26 (2009), 2055-2071. doi: 10.1016/j.anihpc.2008.10.003. [15] F. Santosa and M. Vogelius, First-order corrections to the homogenized eigenvalues of a periodic composite medium, SIAM J. Appl. Math., 53 (1993), 1636-1668. doi: 10.1137/0153076. [16] M. Vanninathan, Homogenization of eigenvalue problems in perforated domains, Proc. Indian Acad. Sci. Math. Sci., 90 (1981), 239-271. doi: 10.1007/BF02838079.
 [1] Eugenia Pérez. On periodic Steklov type eigenvalue problems on half-bands and the spectral homogenization problem. Discrete and Continuous Dynamical Systems - B, 2007, 7 (4) : 859-883. doi: 10.3934/dcdsb.2007.7.859 [2] Fanghua Lin, Xiaodong Yan. A type of homogenization problem. Discrete and Continuous Dynamical Systems, 2003, 9 (1) : 1-30. doi: 10.3934/dcds.2003.9.1 [3] Renata Bunoiu, Claudia Timofte. Homogenization of a thermal problem with flux jump. Networks and Heterogeneous Media, 2016, 11 (4) : 545-562. doi: 10.3934/nhm.2016009 [4] Sunghan Kim, Ki-Ahm Lee, Henrik Shahgholian. Homogenization of the boundary value for the Dirichlet problem. Discrete and Continuous Dynamical Systems, 2019, 39 (12) : 6843-6864. doi: 10.3934/dcds.2019234 [5] Natalia O. Babych, Ilia V. Kamotski, Valery P. Smyshlyaev. Homogenization of spectral problems in bounded domains with doubly high contrasts. Networks and Heterogeneous Media, 2008, 3 (3) : 413-436. doi: 10.3934/nhm.2008.3.413 [6] Ben Schweizer, Marco Veneroni. The needle problem approach to non-periodic homogenization. Networks and Heterogeneous Media, 2011, 6 (4) : 755-781. doi: 10.3934/nhm.2011.6.755 [7] Rémi Goudey. A periodic homogenization problem with defects rare at infinity. Networks and Heterogeneous Media, 2022  doi: 10.3934/nhm.2022014 [8] Fioralba Cakoni, Houssem Haddar, Isaac Harris. Homogenization of the transmission eigenvalue problem for periodic media and application to the inverse problem. Inverse Problems and Imaging, 2015, 9 (4) : 1025-1049. doi: 10.3934/ipi.2015.9.1025 [9] Germain Gendron. Uniqueness results in the inverse spectral Steklov problem. Inverse Problems and Imaging, 2020, 14 (4) : 631-664. doi: 10.3934/ipi.2020029 [10] Leonid Berlyand, Petru Mironescu. Two-parameter homogenization for a Ginzburg-Landau problem in a perforated domain. Networks and Heterogeneous Media, 2008, 3 (3) : 461-487. doi: 10.3934/nhm.2008.3.461 [11] T. A. Shaposhnikova, M. N. Zubova. Homogenization problem for a parabolic variational inequality with constraints on subsets situated on the boundary of the domain. Networks and Heterogeneous Media, 2008, 3 (3) : 675-689. doi: 10.3934/nhm.2008.3.675 [12] Frédéric Legoll, William Minvielle. Variance reduction using antithetic variables for a nonlinear convex stochastic homogenization problem. Discrete and Continuous Dynamical Systems - S, 2015, 8 (1) : 1-27. doi: 10.3934/dcdss.2015.8.1 [13] Grégoire Allaire, Alessandro Ferriero. Homogenization and long time asymptotic of a fluid-structure interaction problem. Discrete and Continuous Dynamical Systems - B, 2008, 9 (2) : 199-220. doi: 10.3934/dcdsb.2008.9.199 [14] Aníbal Rodríguez-Bernal, Robert Willie. Singular large diffusivity and spatial homogenization in a non homogeneous linear parabolic problem. Discrete and Continuous Dynamical Systems - B, 2005, 5 (2) : 385-410. doi: 10.3934/dcdsb.2005.5.385 [15] Grégoire Allaire, Zakaria Habibi. Second order corrector in the homogenization of a conductive-radiative heat transfer problem. Discrete and Continuous Dynamical Systems - B, 2013, 18 (1) : 1-36. doi: 10.3934/dcdsb.2013.18.1 [16] Mamadou Sango. Homogenization of the Neumann problem for a quasilinear elliptic equation in a perforated domain. Networks and Heterogeneous Media, 2010, 5 (2) : 361-384. doi: 10.3934/nhm.2010.5.361 [17] Arianna Giunti. Convergence rates for the homogenization of the Poisson problem in randomly perforated domains. Networks and Heterogeneous Media, 2021, 16 (3) : 341-375. doi: 10.3934/nhm.2021009 [18] Weinan E, Weiguo Gao. Orbital minimization with localization. Discrete and Continuous Dynamical Systems, 2009, 23 (1&2) : 249-264. doi: 10.3934/dcds.2009.23.249 [19] Radu Balan, Peter G. Casazza, Christopher Heil and Zeph Landau. Density, overcompleteness, and localization of frames. Electronic Research Announcements, 2006, 12: 71-86. [20] Luisa Berchialla, Luigi Galgani, Antonio Giorgilli. Localization of energy in FPU chains. Discrete and Continuous Dynamical Systems, 2004, 11 (4) : 855-866. doi: 10.3934/dcds.2004.11.855

2021 Impact Factor: 1.497