\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Nonlinear stability of combination of viscous contact wave with rarefaction waves for a 1D radiation hydrodynamics model

Abstract Related Papers Cited by
  • In this paper we consider the large-time behavior of solutions for the Cauchy problem to a compressible radiating gas model, where the far field states are prescribed. This radiating gas model is represented by the one-dimensional system of gas dynamics coupled with an elliptic equation for radiation flux. When the corresponding Riemann problem for the compressible Euler system admits a solution consisting of a contact wave and two rarefaction waves, it is proved that for such a radiating gas model, the combination of viscous contact wave with rarefaction waves is asymptotically stable provided that the strength of combination wave is suitably small. This result is proved by a domain decomposition technique and elementary energy methods.
    Mathematics Subject Classification: 35L65, 35B40, 35Q35.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    D. G. Aronson, The porous media equation, in "Nonlinear Diffusion Problems" (Montecatini Terme, 1985), Lecture Notes in Math., 1224, Springer, Berlin, (1986), 1-46.

    [2]

    W. L. Gao and C.J . Zhu, Asymptotic decay toward the planar rarefaction waves for a model system of the radiating gas in two dimensions, Math. Models Methods Appl. Sci., 18 (2008), 511-541.doi: 10.1142/S0218202508002760.

    [3]

    K. Hamer, Nonlinear effects on the propagation of sound waves in a radiating gas, Quart. J. Mech. Appl. Math., 24 (1971), 155-168.doi: 10.1093/qjmam/24.2.155.

    [4]

    F. M. Huang, A. Matsumura and Z. P. Xin, Stability of contact discontinuities for the 1-D compressible Navier-Stokes equations, Arch. Ration. Mech. Anal., 179 (2006), 55-77.doi: 10.1007/s00205-005-0380-7.

    [5]

    F. M. Huang, Z. P. Xin and T. Yang, Contact discontinuity with general perturbations for gas motions, Adv. Math., 219 (2008), 1246-1297.doi: 10.1016/j.aim.2008.06.014.

    [6]

    F. M. Huang, J. Li and A. Matsumura, Asymptotic stability of combination of viscous contact wave with rarefaction waves for one-dimensional compressible Navier-Stokes system, Arch. Rational Mech. Anal., 197 (2010), 89-116.doi: 10.1007/s00205-009-0267-0.

    [7]

    S. Jiang, G. Ni and W. Sun, Vanishing viscosity limit to rarefaction waves for the Navier-Stokes equations of one-dimensional compressible heat-conducting fluids, SIAM J. Math. Anal., 38 (2006), 368-384.doi: 10.1137/050626478.

    [8]

    S. Kawashima, Y. Nikkuni and S. Nishibata, The initial value problem for hyperbolic-elliptic coupled systems and applications to radiation hydrodynamics, in "Analysis of Systems of Conservation Laws" (Aachen, 1997), Chapman & Hall/CRC Monogr. Surv. Pure Appl. Math., 99, Chapman & Hall/CRC, Boca Raton, FL, (1999), 87-127.

    [9]

    S. Kawashima and S. Nishibata, Shock waves for a model system of the radiating gas, SIAM J. Math. Anal., 30 (1999), 95-117.doi: 10.1137/S0036141097322169.

    [10]

    S. Kawashima, Y. Nikkuni and S. Nishibata, Large-time behavior of solutions to hyperbolic-elliptic coupled systems, Arch. Ration. Mech. Anal., 170 (2003), 297-329.doi: 10.1007/s00205-003-0273-6.

    [11]

    S. Kawashima and Y. Tanaka, Stability of rarefaction waves for a model system of a radiating gas, Kyushu J. Math., 58 (2004), 211-250.doi: 10.2206/kyushujm.58.211.

    [12]

    C. Lattanzio, C. Mascia and D. Serre, Shock waves for radiative hyperbolic-elliptic systems, Indiana Univ. Math. J., 56 (2007), 2601-2640.doi: 10.1512/iumj.2007.56.3043.

    [13]

    C. J. Lin, J.-F. Coulombel and T. Goudon, Shock profiles for non-equilibrium radiating gases, Phys. D, 218 (2006), 83-94.doi: 10.1016/j.physd.2006.04.012.

    [14]

    C. J. Lin, J.-F. Coulombel and T. Goudon, Asymptotic stability of shock profiles in radiative hydrodynamics, C. R. Math. Acad. Sci. Paris, 345 (2007), 625-628.

    [15]

    C. J. Lin, Asymptotic stability of rarefaction waves in radiative hydrodynamics, Comm. Math. Sci., 9 (2011), 207-223.

    [16]

    T.-P. Liu and Z. P. Xin, Nonlinear stability of rarefaction waves for compressible Navier-Stokes equations, Comm. Math. Phys., 118 (1988), 451-465.doi: 10.1007/BF01466726.

    [17]

    T.-P. Liu and Z. P. Xin, Pointwise decay to contact discontinuities for systems of viscous conservation laws, Asian J. Math., 1 (1997), 34-84.

    [18]

    A. Matsumura and K. Nishihara, Asymptotics toward the rarefaction waves of the solutions of a one-dimensional model system for compressible viscous gas, Japan J. Appl. Math., 3 (1986), 1-13.doi: 10.1007/BF03167088.

    [19]

    T. Nguyen, R. G. Plaza and K. Zumbrun, Stability of radiative shock profiles for hyperbolic-elliptic coupled systems, Phys. D, 239 (2010), 428-453.doi: 10.1016/j.physd.2010.01.011.

    [20]

    K. Nishihara, T. Yang and H. J. Zhao, Nonlinear stability of strong rarefaction waves for compressible Navier-Stokes equations, SIAM J. Math. Ana., 35 (2004), 1561-1597.doi: 10.1137/S003614100342735X.

    [21]

    C. Rohde and F. Xie, Decay rates to viscous contact wave for a 1D compressible radiation hydrodynamics model, submitted, 2011.

    [22]

    L. Z. Ruan and C. J. Zhu, Asymptotic behavior of solutions to a hyperbolic-elliptic coupled system in multi-dimensional radiating gas, J. Differential Equations, 249 (2010), 2076-2110.doi: 10.1016/j.jde.2010.07.029.

    [23]

    J. Smoller, "Shock Waves and Reaction-Diffusion Equations," 2nd edition, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], 258, Springer-Verlag, New York, 1994.

    [24]

    C. J. van Duyn and L. A. PeletierA class of similarity solutions of the nonlinear diffusion equation, Nonlinear Anal., 1 (1976/77), 223-233.

    [25]

    W. Vincenti and C. Kruger, "Introduction to Physical Gas Dynamics," Wiley, New York, 1965.

    [26]

    J. Wang and F. Xie, Asymptotic stability of viscous contact wave for the 1D radiation hydrodynamics system, Jour. Diff. Equations, 251 (2011), 1030-1055.doi: 10.1016/j.jde.2011.03.011.

    [27]

    J. Wang and F. Xie, Singular limit to strong contact discontinuity for a 1D compressible radiation hydrodynamics model, SIAM J. Math. Anal., 43 (2011), 1189-1204.doi: 10.1137/100792792.

    [28]

    J. Wang and F. Xie, Asymptotic stability of viscous contact wave for the one-dimensional compressible viscous gas with radiation, Nonlinear Analysis, 74 (2011), 4138-4151.doi: 10.1016/j.na.2011.03.047.

    [29]

    Z. P. Xin, On nonlinear stability of contact discontinuities, in "Hyperbolic Problems: Theory, Numerics, Applications" (Stony Brook, NY, 1994), World Sci. Publ., River Edge, NJ, (1996), 249-257.

  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(131) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return