-
Previous Article
Well-posedness of a model for water waves with viscosity
- DCDS-B Home
- This Issue
-
Next Article
Preface
Vorticity jumps in steady water waves
1. | Brown University, Department of Mathematics and Lefschetz Center for Dynamical Systems, Providence, RI 02912, United States |
References:
[1] |
J. T. Beale, The existence of solitary water waves, Comm. Pure Appl. Math., 30 (1977), 373-389.
doi: 10.1002/cpa.3160300402. |
[2] |
B. Buffoni and J. F. Toland, "Analytic Theory of Global Bifurcation. An Introduction," Princeton Series in Applied Mathematics, Princeton University Press, Princeton, NJ, 2003. |
[3] |
A. Constantin and W. Strauss, Exact steady periodic water waves with vorticity, Comm. Pure Appl. Math., 57 (2004), 481-527.
doi: 10.1002/cpa.3046. |
[4] |
A. Constantin and W. Strauss, Periodic traveling gravity waves with discontinuous vorticity, Arch. Ration. Mech. Anal., 202 (2011), 133-175.
doi: 10.1007/s00205-011-0412-4. |
[5] |
R. Finn and D. Gilbarg, Asymptotic behavior and uniqueness of plane subsonic flows, Comm. Pure Appl. Math., 10 (1957), 23-63. |
[6] |
D. Gilbarg and N. S. Trudinger, "Elliptic Partial Differential Equations of Second Order," Reprint of the 1998 edition, Classics in Mathematics, Springer-Verlag, Berlin, 2001. |
[7] |
T. Healey and H. Simpson, Global continuation in nonlinear elasticity, Arch. Ration. Mech. Anal., 143 (1998), 1-28.
doi: 10.1007/s002050050098. |
[8] |
G. M. Lieberman, The nonlinear oblique derivative problem for quasilinear elliptic equations, Nonlinear Anal., 8 (1984), 49-65.
doi: 10.1016/0362-546X(84)90027-0. |
[9] |
J. Ko and W. Strauss, Large-amplitude steady rotational water waves, Europ. J. Mech. B Fluids, 27 (2007), 96-109.
doi: 10.1016/j.euromechflu.2007.04.004. |
[10] |
J. Ko and W. Strauss, Effect of vorticity on steady water waves, J. Fluid Mech., 608 (2008), 197-215.
doi: 10.1017/S0022112008002371. |
[11] |
O. M. Philllips and M. L. Banner, Wave breaking in presence of wind drift and swell, J. Fluid Mech., 66 (1974), 625-640.
doi: 10.1017/S0022112074000413. |
[12] |
J. Serrin, A symmetry theorem in potential theory, Arch. Ration. Mech. Anal., 43 (1971), 304-318.
doi: 10.1007/BF00250468. |
[13] |
W. Strauss, Steady water waves, Bull. Amer. Math. Soc. (N.S.), 47 (2010), 671-694. |
[14] |
S. Walsh, Stratified and steady periodic gravity waves, SIAM J. Math. Anal., 41 (2009), 1054-1105.
doi: 10.1137/080721583. |
[15] |
S. Walsh, Steady periodic gravity waves with surface tension,, preprint, ().
|
show all references
References:
[1] |
J. T. Beale, The existence of solitary water waves, Comm. Pure Appl. Math., 30 (1977), 373-389.
doi: 10.1002/cpa.3160300402. |
[2] |
B. Buffoni and J. F. Toland, "Analytic Theory of Global Bifurcation. An Introduction," Princeton Series in Applied Mathematics, Princeton University Press, Princeton, NJ, 2003. |
[3] |
A. Constantin and W. Strauss, Exact steady periodic water waves with vorticity, Comm. Pure Appl. Math., 57 (2004), 481-527.
doi: 10.1002/cpa.3046. |
[4] |
A. Constantin and W. Strauss, Periodic traveling gravity waves with discontinuous vorticity, Arch. Ration. Mech. Anal., 202 (2011), 133-175.
doi: 10.1007/s00205-011-0412-4. |
[5] |
R. Finn and D. Gilbarg, Asymptotic behavior and uniqueness of plane subsonic flows, Comm. Pure Appl. Math., 10 (1957), 23-63. |
[6] |
D. Gilbarg and N. S. Trudinger, "Elliptic Partial Differential Equations of Second Order," Reprint of the 1998 edition, Classics in Mathematics, Springer-Verlag, Berlin, 2001. |
[7] |
T. Healey and H. Simpson, Global continuation in nonlinear elasticity, Arch. Ration. Mech. Anal., 143 (1998), 1-28.
doi: 10.1007/s002050050098. |
[8] |
G. M. Lieberman, The nonlinear oblique derivative problem for quasilinear elliptic equations, Nonlinear Anal., 8 (1984), 49-65.
doi: 10.1016/0362-546X(84)90027-0. |
[9] |
J. Ko and W. Strauss, Large-amplitude steady rotational water waves, Europ. J. Mech. B Fluids, 27 (2007), 96-109.
doi: 10.1016/j.euromechflu.2007.04.004. |
[10] |
J. Ko and W. Strauss, Effect of vorticity on steady water waves, J. Fluid Mech., 608 (2008), 197-215.
doi: 10.1017/S0022112008002371. |
[11] |
O. M. Philllips and M. L. Banner, Wave breaking in presence of wind drift and swell, J. Fluid Mech., 66 (1974), 625-640.
doi: 10.1017/S0022112074000413. |
[12] |
J. Serrin, A symmetry theorem in potential theory, Arch. Ration. Mech. Anal., 43 (1971), 304-318.
doi: 10.1007/BF00250468. |
[13] |
W. Strauss, Steady water waves, Bull. Amer. Math. Soc. (N.S.), 47 (2010), 671-694. |
[14] |
S. Walsh, Stratified and steady periodic gravity waves, SIAM J. Math. Anal., 41 (2009), 1054-1105.
doi: 10.1137/080721583. |
[15] |
S. Walsh, Steady periodic gravity waves with surface tension,, preprint, ().
|
[1] |
Delia Ionescu-Kruse. Elliptic and hyperelliptic functions describing the particle motion beneath small-amplitude water waves with constant vorticity. Communications on Pure and Applied Analysis, 2012, 11 (4) : 1475-1496. doi: 10.3934/cpaa.2012.11.1475 |
[2] |
Jifeng Chu, Joachim Escher. Steady periodic equatorial water waves with vorticity. Discrete and Continuous Dynamical Systems, 2019, 39 (8) : 4713-4729. doi: 10.3934/dcds.2019191 |
[3] |
Elena Kartashova. Nonlinear resonances of water waves. Discrete and Continuous Dynamical Systems - B, 2009, 12 (3) : 607-621. doi: 10.3934/dcdsb.2009.12.607 |
[4] |
Adrian Constantin. Dispersion relations for periodic traveling water waves in flows with discontinuous vorticity. Communications on Pure and Applied Analysis, 2012, 11 (4) : 1397-1406. doi: 10.3934/cpaa.2012.11.1397 |
[5] |
Mats Ehrnström. Deep-water waves with vorticity: symmetry and rotational behaviour. Discrete and Continuous Dynamical Systems, 2007, 19 (3) : 483-491. doi: 10.3934/dcds.2007.19.483 |
[6] |
Calin Iulian Martin. Dispersion relations for periodic water waves with surface tension and discontinuous vorticity. Discrete and Continuous Dynamical Systems, 2014, 34 (8) : 3109-3123. doi: 10.3934/dcds.2014.34.3109 |
[7] |
Denys Dutykh, Delia Ionescu-Kruse. Effects of vorticity on the travelling waves of some shallow water two-component systems. Discrete and Continuous Dynamical Systems, 2019, 39 (9) : 5521-5541. doi: 10.3934/dcds.2019225 |
[8] |
Silvia Sastre-Gomez. Equivalent formulations for steady periodic water waves of fixed mean-depth with discontinuous vorticity. Discrete and Continuous Dynamical Systems, 2017, 37 (5) : 2669-2680. doi: 10.3934/dcds.2017114 |
[9] |
Delia Ionescu-Kruse, Anca-Voichita Matioc. Small-amplitude equatorial water waves with constant vorticity: Dispersion relations and particle trajectories. Discrete and Continuous Dynamical Systems, 2014, 34 (8) : 3045-3060. doi: 10.3934/dcds.2014.34.3045 |
[10] |
David Henry. Energy considerations for nonlinear equatorial water waves. Communications on Pure and Applied Analysis, 2022, 21 (7) : 2337-2356. doi: 10.3934/cpaa.2022057 |
[11] |
R. S. Johnson. A selection of nonlinear problems in water waves, analysed by perturbation-parameter techniques. Communications on Pure and Applied Analysis, 2012, 11 (4) : 1497-1522. doi: 10.3934/cpaa.2012.11.1497 |
[12] |
Octavian G. Mustafa. On isolated vorticity regions beneath the water surface. Communications on Pure and Applied Analysis, 2012, 11 (4) : 1523-1535. doi: 10.3934/cpaa.2012.11.1523 |
[13] |
Robert McOwen, Peter Topalov. Asymptotics in shallow water waves. Discrete and Continuous Dynamical Systems, 2015, 35 (7) : 3103-3131. doi: 10.3934/dcds.2015.35.3103 |
[14] |
Hung Le. Elliptic equations with transmission and Wentzell boundary conditions and an application to steady water waves in the presence of wind. Discrete and Continuous Dynamical Systems, 2018, 38 (7) : 3357-3385. doi: 10.3934/dcds.2018144 |
[15] |
Calin I. Martin. On three-dimensional free surface water flows with constant vorticity. Communications on Pure and Applied Analysis, 2022, 21 (7) : 2415-2431. doi: 10.3934/cpaa.2022053 |
[16] |
Calin Iulian Martin. A Hamiltonian approach for nonlinear rotational capillary-gravity water waves in stratified flows. Discrete and Continuous Dynamical Systems, 2017, 37 (1) : 387-404. doi: 10.3934/dcds.2017016 |
[17] |
Jerry L. Bona, Henrik Kalisch. Models for internal waves in deep water. Discrete and Continuous Dynamical Systems, 2000, 6 (1) : 1-20. doi: 10.3934/dcds.2000.6.1 |
[18] |
Vera Mikyoung Hur. On the formation of singularities for surface water waves. Communications on Pure and Applied Analysis, 2012, 11 (4) : 1465-1474. doi: 10.3934/cpaa.2012.11.1465 |
[19] |
Martina Chirilus-Bruckner, Guido Schneider. Interaction of oscillatory packets of water waves. Conference Publications, 2015, 2015 (special) : 267-275. doi: 10.3934/proc.2015.0267 |
[20] |
Philippe Bonneton, Nicolas Bruneau, Bruno Castelle, Fabien Marche. Large-scale vorticity generation due to dissipating waves in the surf zone. Discrete and Continuous Dynamical Systems - B, 2010, 13 (4) : 729-738. doi: 10.3934/dcdsb.2010.13.729 |
2020 Impact Factor: 1.327
Tools
Metrics
Other articles
by authors
[Back to Top]