# American Institute of Mathematical Sciences

June  2012, 17(4): 1175-1184. doi: 10.3934/dcdsb.2012.17.1175

## An augmented immersed interface method for moving structures with mass

 1 Department of Mathematics, Center for Research in Scientiﬁc Computation, Center for Quantitative Sciences in Biomedicine, North Carolina State University, Raleigh, NC 27695, United States, United States, United States

Received  February 2011 Revised  August 2011 Published  February 2012

We present an augmented immersed interface method for simulating the dynamics of a deformable structure with mass in an incompressible fluid. The fluid is modeled by the Navier-Stokes equations in two dimensions. The acceleration of the structure due to mass is coupled with the flow velocity and the pressure. The surface tension of the structure is assumed to be a constant for simplicity. In our method, we treat the unknown acceleration as the only augmented variable so that the augmented immersed interface method can be applied. We use a modified projection method that can enforce the pressure jump conditions corresponding to the unknown acceleration. The acceleration must match the flow acceleration along the interface. The proposed augmented method is tested against an exact solution with a stationary interface. It shows that the augmented method has a second order of convergence in space. The dynamics of a deformable circular structure with mass is also investigated. It shows that the fluid-structure system has bi-stability: a stationary state for a smaller Reynolds number and an oscillatory state for a larger Reynolds number. The observation agrees with those in the literature.
Citation: Jian Hao, Zhilin Li, Sharon R. Lubkin. An augmented immersed interface method for moving structures with mass. Discrete and Continuous Dynamical Systems - B, 2012, 17 (4) : 1175-1184. doi: 10.3934/dcdsb.2012.17.1175
##### References:
 [1] R. Glowinski, T.-W. Pan, T. I. Hesla, D. D. Joseph and J. Périaux, A fictitious domain approach to the direct numerical simulation of incompressible viscous flow past moving rigid bodies: Application to particulate flow, J. Comput. Phys., 169 (2001), 363-426. doi: 10.1006/jcph.2000.6542. [2] J. Hao, T.-W. Pan, R. Glowinski and D. D. Joseph, A fictitious domain/distributed Lagrange multiplier method for the particulate flow of Oldroyd-B fluids: A positive definiteness preserving approach, J. Non-Newtonian Fluid Mech., 156 (2009), 95-111. doi: 10.1016/j.jnnfm.2008.07.006. [3] J. Hao, T.-W. Pan, S. Čanić, R. Glowinski and D. Rosenstrauch, A fluid-cell interaction and adhesion algorithm for tissue-coating of cardiovascular implants, Multiscale Model. Simul., 7 (2009), 1669-1694. doi: 10.1137/080733188. [4] J. Hao and L. Zhu, A lattice Boltzmann based implicit immersed boundary method for fluid-structure interaction, Comp. Math. Appl., 59 (2010), 185-193. doi: 10.1016/j.camwa.2009.06.055. [5] J. Hao and L. Zhu, A lattice Boltzmann based implicit immersed boundary method in three dimensions,, submitted., (). [6] T. Y. Hou and Z. Shi, An efficient semi-implicit immersed boundary method for the Navier-Stokes equations, J. Comput. Phys., 227 (2008), 8968-8991. doi: 10.1016/j.jcp.2008.07.005. [7] K. Ito, M.-C. Lai and Z. Li, A well-conditioned augmented system for solving Navier-Stokes equations in irregular domains, J. Comput. Phys., 228 (2009), 2616-2628. doi: 10.1016/j.jcp.2008.12.028. [8] S. W. Jung, K. Mareck, M. Shelley and J. Zhang, Dynamics of a deformable body in a fast flowing soap film, Phys. Rev. Lett., 97 (2006), 134502. doi: 10.1103/PhysRevLett.97.134502. [9] Y. Kim and C. S. Peskin, Penalty immersed boundary method for an elastic boundary with mass, Phys. Fluids, 19 (2007), 053103. doi: 10.1063/1.2734674. [10] Y. Kim, L. Zhu, X. Wang and C. S. Peskin, On various techniques for computer simulation of boundaries with mass, in "Computational Fluid and Solid Mechanics" (eds. K. J. Bathe), Elsevier, (2003), 1746-1750. [11] R. J. LeVeque and Z. Li, Immersed interface methods for Stokes flow with elastic boundaries or surface tension, SIAM J. Sci. Comput., 18 (1997), 709-735. doi: 10.1137/S1064827595282532. [12] Z. Li, "The Immersed Interface Method-A Numerical Approach for Partial Differential Equations with Interfaces," Ph.D thesis, University of Washington, 1994. [13] Z. Li and K. Ito, "The Immersed Interface Method. Numerical Solutions of PDEs Involving Interfaces and Irregular Domains," Frontiers in Applied Mathematics, 33, SIAM, Philadelphia, PA, 2006. [14] Z. Li and M.-C. Lai, The immersed interface method for the Navier-Stokes equations with singular forces, J. Comput. Phys., 171 (2001), 822-842. doi: 10.1006/jcph.2001.6813. [15] Z. Li and M.-C. Lai, New finite difference methods based on IIM for inextensible interfaces in incompressible flows, East Asian J. Applied Math., 1 (2011), 155-171. [16] Y. Mori and C. S. Peskin, Implicit second-order immersed boundary methods with boundary mass, Comput. Methods Appl. Mech. Engrg., 197 (2008), 2049-2067. doi: 10.1016/j.cma.2007.05.028. [17] T.-W. Pan and R. Glowinski, Direct simulation of the motion of neutrally buoyant circular cylinders in plane Poiseuille flow, J. Comput. Phys., 181 (2002), 260-279. doi: 10.1006/jcph.2002.7123. [18] C. S. Peskin, "Flow Patterns Around Heart Valves: A Digital Computer Method for Solving the Equations of Motion," Ph.D thesis, Albert Einstein Coll. Med., 1972. [19] C. S. Peskin, Numerical analysis of blood flow in the heart, J. Comput. Phys., 25 (1977), 220-252. doi: 10.1016/0021-9991(77)90100-0. [20] C. S. Peskin, The immersed boundary method, Acta Numerica, 11 (2002), 479-517. doi: 10.1017/S0962492902000077. [21] K. Shoele and Q. Zhu, Flow-induced vibrations of a deformable ring, J. Fluid Mech., 650 (2010), 343-362. doi: 10.1017/S0022112009993697. [22] X. S. Wang, An iterative matrix-free method in implicit immersed boundary/continuum methods, Computers and Structures, 85 (2007), 739-748. doi: 10.1016/j.compstruc.2007.01.017. [23] J. Zhang, S. Childress, A. Libchaber and M. Shelley, Flexible filaments in a flowing soap film as a model for one-dimensional flags in a two-dimensional wind, Nature, 408 (2000), 835. doi: 10.1038/35048530. [24] L. Zhu, Scaling laws for drag of a compliant body in an incompressible viscous flow, J. Fluid Mech., 607 (2008), 387-400. [25] L. Zhu and C. S. Peskin, Interaction of two flexible filaments in a flowing soap film, Phys. Fluids, 15 (2003), 1954-1960. doi: 10.1063/1.1582476. [26] L. Zhu and C. S. Peskin, Simulation of a flapping flexible filament in a flowing soap film by the immersed boundary method, J. Comput. Phys., 179 (2002), 452-468. doi: 10.1006/jcph.2002.7066.

show all references

##### References:
 [1] R. Glowinski, T.-W. Pan, T. I. Hesla, D. D. Joseph and J. Périaux, A fictitious domain approach to the direct numerical simulation of incompressible viscous flow past moving rigid bodies: Application to particulate flow, J. Comput. Phys., 169 (2001), 363-426. doi: 10.1006/jcph.2000.6542. [2] J. Hao, T.-W. Pan, R. Glowinski and D. D. Joseph, A fictitious domain/distributed Lagrange multiplier method for the particulate flow of Oldroyd-B fluids: A positive definiteness preserving approach, J. Non-Newtonian Fluid Mech., 156 (2009), 95-111. doi: 10.1016/j.jnnfm.2008.07.006. [3] J. Hao, T.-W. Pan, S. Čanić, R. Glowinski and D. Rosenstrauch, A fluid-cell interaction and adhesion algorithm for tissue-coating of cardiovascular implants, Multiscale Model. Simul., 7 (2009), 1669-1694. doi: 10.1137/080733188. [4] J. Hao and L. Zhu, A lattice Boltzmann based implicit immersed boundary method for fluid-structure interaction, Comp. Math. Appl., 59 (2010), 185-193. doi: 10.1016/j.camwa.2009.06.055. [5] J. Hao and L. Zhu, A lattice Boltzmann based implicit immersed boundary method in three dimensions,, submitted., (). [6] T. Y. Hou and Z. Shi, An efficient semi-implicit immersed boundary method for the Navier-Stokes equations, J. Comput. Phys., 227 (2008), 8968-8991. doi: 10.1016/j.jcp.2008.07.005. [7] K. Ito, M.-C. Lai and Z. Li, A well-conditioned augmented system for solving Navier-Stokes equations in irregular domains, J. Comput. Phys., 228 (2009), 2616-2628. doi: 10.1016/j.jcp.2008.12.028. [8] S. W. Jung, K. Mareck, M. Shelley and J. Zhang, Dynamics of a deformable body in a fast flowing soap film, Phys. Rev. Lett., 97 (2006), 134502. doi: 10.1103/PhysRevLett.97.134502. [9] Y. Kim and C. S. Peskin, Penalty immersed boundary method for an elastic boundary with mass, Phys. Fluids, 19 (2007), 053103. doi: 10.1063/1.2734674. [10] Y. Kim, L. Zhu, X. Wang and C. S. Peskin, On various techniques for computer simulation of boundaries with mass, in "Computational Fluid and Solid Mechanics" (eds. K. J. Bathe), Elsevier, (2003), 1746-1750. [11] R. J. LeVeque and Z. Li, Immersed interface methods for Stokes flow with elastic boundaries or surface tension, SIAM J. Sci. Comput., 18 (1997), 709-735. doi: 10.1137/S1064827595282532. [12] Z. Li, "The Immersed Interface Method-A Numerical Approach for Partial Differential Equations with Interfaces," Ph.D thesis, University of Washington, 1994. [13] Z. Li and K. Ito, "The Immersed Interface Method. Numerical Solutions of PDEs Involving Interfaces and Irregular Domains," Frontiers in Applied Mathematics, 33, SIAM, Philadelphia, PA, 2006. [14] Z. Li and M.-C. Lai, The immersed interface method for the Navier-Stokes equations with singular forces, J. Comput. Phys., 171 (2001), 822-842. doi: 10.1006/jcph.2001.6813. [15] Z. Li and M.-C. Lai, New finite difference methods based on IIM for inextensible interfaces in incompressible flows, East Asian J. Applied Math., 1 (2011), 155-171. [16] Y. Mori and C. S. Peskin, Implicit second-order immersed boundary methods with boundary mass, Comput. Methods Appl. Mech. Engrg., 197 (2008), 2049-2067. doi: 10.1016/j.cma.2007.05.028. [17] T.-W. Pan and R. Glowinski, Direct simulation of the motion of neutrally buoyant circular cylinders in plane Poiseuille flow, J. Comput. Phys., 181 (2002), 260-279. doi: 10.1006/jcph.2002.7123. [18] C. S. Peskin, "Flow Patterns Around Heart Valves: A Digital Computer Method for Solving the Equations of Motion," Ph.D thesis, Albert Einstein Coll. Med., 1972. [19] C. S. Peskin, Numerical analysis of blood flow in the heart, J. Comput. Phys., 25 (1977), 220-252. doi: 10.1016/0021-9991(77)90100-0. [20] C. S. Peskin, The immersed boundary method, Acta Numerica, 11 (2002), 479-517. doi: 10.1017/S0962492902000077. [21] K. Shoele and Q. Zhu, Flow-induced vibrations of a deformable ring, J. Fluid Mech., 650 (2010), 343-362. doi: 10.1017/S0022112009993697. [22] X. S. Wang, An iterative matrix-free method in implicit immersed boundary/continuum methods, Computers and Structures, 85 (2007), 739-748. doi: 10.1016/j.compstruc.2007.01.017. [23] J. Zhang, S. Childress, A. Libchaber and M. Shelley, Flexible filaments in a flowing soap film as a model for one-dimensional flags in a two-dimensional wind, Nature, 408 (2000), 835. doi: 10.1038/35048530. [24] L. Zhu, Scaling laws for drag of a compliant body in an incompressible viscous flow, J. Fluid Mech., 607 (2008), 387-400. [25] L. Zhu and C. S. Peskin, Interaction of two flexible filaments in a flowing soap film, Phys. Fluids, 15 (2003), 1954-1960. doi: 10.1063/1.1582476. [26] L. Zhu and C. S. Peskin, Simulation of a flapping flexible filament in a flowing soap film by the immersed boundary method, J. Comput. Phys., 179 (2002), 452-468. doi: 10.1006/jcph.2002.7066.
 [1] Qiang Du, Manlin Li. On the stochastic immersed boundary method with an implicit interface formulation. Discrete and Continuous Dynamical Systems - B, 2011, 15 (2) : 373-389. doi: 10.3934/dcdsb.2011.15.373 [2] Anita T. Layton, J. Thomas Beale. A partially implicit hybrid method for computing interface motion in Stokes flow. Discrete and Continuous Dynamical Systems - B, 2012, 17 (4) : 1139-1153. doi: 10.3934/dcdsb.2012.17.1139 [3] Champike Attanayake, So-Hsiang Chou. An immersed interface method for Pennes bioheat transfer equation. Discrete and Continuous Dynamical Systems - B, 2015, 20 (2) : 323-337. doi: 10.3934/dcdsb.2015.20.323 [4] Sheng Xu. Derivation of principal jump conditions for the immersed interface method in two-fluid flow simulation. Conference Publications, 2009, 2009 (Special) : 838-845. doi: 10.3934/proc.2009.2009.838 [5] So-Hsiang Chou. An immersed linear finite element method with interface flux capturing recovery. Discrete and Continuous Dynamical Systems - B, 2012, 17 (7) : 2343-2357. doi: 10.3934/dcdsb.2012.17.2343 [6] Zhongyi Huang. Tailored finite point method for the interface problem. Networks and Heterogeneous Media, 2009, 4 (1) : 91-106. doi: 10.3934/nhm.2009.4.91 [7] Derrick Jones, Xu Zhang. A conforming-nonconforming mixed immersed finite element method for unsteady Stokes equations with moving interfaces. Electronic Research Archive, 2021, 29 (5) : 3171-3191. doi: 10.3934/era.2021032 [8] Eric Blayo, Antoine Rousseau. About interface conditions for coupling hydrostatic and nonhydrostatic Navier-Stokes flows. Discrete and Continuous Dynamical Systems - S, 2016, 9 (5) : 1565-1574. doi: 10.3934/dcdss.2016063 [9] Pavel Eichler, Radek Fučík, Robert Straka. Computational study of immersed boundary - lattice Boltzmann method for fluid-structure interaction. Discrete and Continuous Dynamical Systems - S, 2021, 14 (3) : 819-833. doi: 10.3934/dcdss.2020349 [10] Daniele Boffi, Lucia Gastaldi. Discrete models for fluid-structure interactions: The finite element Immersed Boundary Method. Discrete and Continuous Dynamical Systems - S, 2016, 9 (1) : 89-107. doi: 10.3934/dcdss.2016.9.89 [11] Xiaoxiao He, Fei Song, Weibing Deng. A stabilized nonconforming Nitsche's extended finite element method for Stokes interface problems. Discrete and Continuous Dynamical Systems - B, 2022, 27 (5) : 2849-2871. doi: 10.3934/dcdsb.2021163 [12] Michele Coti Zelati. Remarks on the approximation of the Navier-Stokes equations via the implicit Euler scheme. Communications on Pure and Applied Analysis, 2013, 12 (6) : 2829-2838. doi: 10.3934/cpaa.2013.12.2829 [13] I. Moise, Roger Temam. Renormalization group method: Application to Navier-Stokes equation. Discrete and Continuous Dynamical Systems, 2000, 6 (1) : 191-210. doi: 10.3934/dcds.2000.6.191 [14] Hi Jun Choe, Hyea Hyun Kim, Do Wan Kim, Yongsik Kim. Meshless method for the stationary incompressible Navier-Stokes equations. Discrete and Continuous Dynamical Systems - B, 2001, 1 (4) : 495-526. doi: 10.3934/dcdsb.2001.1.495 [15] Yinnian He, R. M.M. Mattheij. Reformed post-processing Galerkin method for the Navier-Stokes equations. Discrete and Continuous Dynamical Systems - B, 2007, 8 (2) : 369-387. doi: 10.3934/dcdsb.2007.8.369 [16] Kaitai Li, Yanren Hou. Fourier nonlinear Galerkin method for Navier-Stokes equations. Discrete and Continuous Dynamical Systems, 1996, 2 (4) : 497-524. doi: 10.3934/dcds.1996.2.497 [17] Hi Jun Choe, Do Wan Kim, Yongsik Kim. Meshfree method for the non-stationary incompressible Navier-Stokes equations. Discrete and Continuous Dynamical Systems - B, 2006, 6 (1) : 17-39. doi: 10.3934/dcdsb.2006.6.17 [18] Takayuki Kubo, Ranmaru Matsui. On pressure stabilization method for nonstationary Navier-Stokes equations. Communications on Pure and Applied Analysis, 2018, 17 (6) : 2283-2307. doi: 10.3934/cpaa.2018109 [19] Jianliang Li, Jiaqing Yang, Bo Zhang. A linear sampling method for inverse acoustic scattering by a locally rough interface. Inverse Problems and Imaging, 2021, 15 (5) : 1247-1267. doi: 10.3934/ipi.2021036 [20] Hongsong Feng, Shan Zhao. A multigrid based finite difference method for solving parabolic interface problem. Electronic Research Archive, 2021, 29 (5) : 3141-3170. doi: 10.3934/era.2021031

2020 Impact Factor: 1.327