June  2012, 17(4): 1205-1228. doi: 10.3934/dcdsb.2012.17.1205

Accurate two and three dimensional interpolation for particle mesh calculations

1. 

Mathematics Department, Baruch College CUNY, New York, NY, United States

Received  January 2011 Revised  December 2011 Published  February 2012

We present accurate two and three dimensional methods for interpolating singular or smoothed force fields. The methods are meant to be used in particle mesh or particle-particle particle-mesh calculations so that the resulting schemes conserve momentum. The interpolation weights, which have previously been used by Anderson and Colella to spread charge from particles to the mesh (but not to interpolate the force from the mesh to the particles) use discretizations of the differential equations the forces satisfy. The methods are most accurate when the forces satisfy homogeneous elliptic differential equations or systems of equations, and the precise accuracy levels of the interpolation formulas depend on the accuracy of certain corresponding quadrature formulas. We describe the methods and give results of numerical experiments which demonstrate their effectiveness.
Citation: Anita Mayo. Accurate two and three dimensional interpolation for particle mesh calculations. Discrete & Continuous Dynamical Systems - B, 2012, 17 (4) : 1205-1228. doi: 10.3934/dcdsb.2012.17.1205
References:
[1]

C. Anderson, A method of local corrections for computing the velocity field due to a distribution of vortex blobs, J. Comp. Phys., 62 (1986), 111-123. doi: 10.1016/0021-9991(86)90102-6.  Google Scholar

[2]

K. Atkinson, "An Introduction to Numerical Analysis," John Wiley & Sons, New York-Chichester-Brisbane, 1978.  Google Scholar

[3]

C. K. Birdsall and W. Bridges, Space-charge instabilities in electron diodes and plasma converters, J. Appl. Phys., 32 (1961), 2611-2618. doi: 10.1063/1.1728361.  Google Scholar

[4]

O. Buneman, Dissipation of currents in ionised media, Phys. Rev., 115 (1959), 503-517. doi: 10.1103/PhysRev.115.503.  Google Scholar

[5]

P. Colella and P. Norgaard, Controlling self-force errors at refinement boundaries for AMR-PIC, J. Comp. Phys., 299 (2010), 947-957. doi: 10.1016/j.jcp.2009.07.004.  Google Scholar

[6]

H. Engels, "Numerical Cubature and Quadrature," Computational Mathematics and Applications, Academic Press, Inc. [Harcourt Brace Jovanovich, Publishers], London-New York, 1980.  Google Scholar

[7]

M. Gupta, R. Mandohar and J. Stephenson, High-order difference scheme for two dimensional elliptic equations, Numer. Methods Partial Differential Equations, 1 (1985), 71-80. doi: 10.1002/num.1690010108.  Google Scholar

[8]

R. Hockney, R. Warriner and J. Reiset, Two dimensional particle models in semiconductor device analysis, Electron. Lett., 10 (1974), 484-486. doi: 10.1049/el:19740386.  Google Scholar

[9]

R. Hockney and J. Eastwood, "Computer Simulation Using Particles," McGraw Hill, New York, 1979. Google Scholar

[10]

R. Lynch and J. Rice, A high-order difference method for differential equations, Math. Comp., 34 (1980), 333-372.  Google Scholar

[11]

A. Mayo, Fast, high order accurate solution of Laplace's equation on irregular regions, SIAM J. Sci. and Stat. Comput., 6 (1985), 144-157. doi: 10.1137/0906012.  Google Scholar

[12]

C. Peskin, Numerical analysis of blood flow in the heart, J. Comp. Phys, 25 (1977), 220-252. doi: 10.1016/0021-9991(77)90100-0.  Google Scholar

show all references

References:
[1]

C. Anderson, A method of local corrections for computing the velocity field due to a distribution of vortex blobs, J. Comp. Phys., 62 (1986), 111-123. doi: 10.1016/0021-9991(86)90102-6.  Google Scholar

[2]

K. Atkinson, "An Introduction to Numerical Analysis," John Wiley & Sons, New York-Chichester-Brisbane, 1978.  Google Scholar

[3]

C. K. Birdsall and W. Bridges, Space-charge instabilities in electron diodes and plasma converters, J. Appl. Phys., 32 (1961), 2611-2618. doi: 10.1063/1.1728361.  Google Scholar

[4]

O. Buneman, Dissipation of currents in ionised media, Phys. Rev., 115 (1959), 503-517. doi: 10.1103/PhysRev.115.503.  Google Scholar

[5]

P. Colella and P. Norgaard, Controlling self-force errors at refinement boundaries for AMR-PIC, J. Comp. Phys., 299 (2010), 947-957. doi: 10.1016/j.jcp.2009.07.004.  Google Scholar

[6]

H. Engels, "Numerical Cubature and Quadrature," Computational Mathematics and Applications, Academic Press, Inc. [Harcourt Brace Jovanovich, Publishers], London-New York, 1980.  Google Scholar

[7]

M. Gupta, R. Mandohar and J. Stephenson, High-order difference scheme for two dimensional elliptic equations, Numer. Methods Partial Differential Equations, 1 (1985), 71-80. doi: 10.1002/num.1690010108.  Google Scholar

[8]

R. Hockney, R. Warriner and J. Reiset, Two dimensional particle models in semiconductor device analysis, Electron. Lett., 10 (1974), 484-486. doi: 10.1049/el:19740386.  Google Scholar

[9]

R. Hockney and J. Eastwood, "Computer Simulation Using Particles," McGraw Hill, New York, 1979. Google Scholar

[10]

R. Lynch and J. Rice, A high-order difference method for differential equations, Math. Comp., 34 (1980), 333-372.  Google Scholar

[11]

A. Mayo, Fast, high order accurate solution of Laplace's equation on irregular regions, SIAM J. Sci. and Stat. Comput., 6 (1985), 144-157. doi: 10.1137/0906012.  Google Scholar

[12]

C. Peskin, Numerical analysis of blood flow in the heart, J. Comp. Phys, 25 (1977), 220-252. doi: 10.1016/0021-9991(77)90100-0.  Google Scholar

[1]

Rongjie Lai, Jiang Liang, Hong-Kai Zhao. A local mesh method for solving PDEs on point clouds. Inverse Problems & Imaging, 2013, 7 (3) : 737-755. doi: 10.3934/ipi.2013.7.737

[2]

Noah Stevenson, Ian Tice. A truncated real interpolation method and characterizations of screened Sobolev spaces. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5509-5566. doi: 10.3934/cpaa.2020250

[3]

José Antonio Carrillo, Yanghong Huang, Francesco Saverio Patacchini, Gershon Wolansky. Numerical study of a particle method for gradient flows. Kinetic & Related Models, 2017, 10 (3) : 613-641. doi: 10.3934/krm.2017025

[4]

Hector D. Ceniceros. A semi-implicit moving mesh method for the focusing nonlinear Schrödinger equation. Communications on Pure & Applied Analysis, 2002, 1 (1) : 1-18. doi: 10.3934/cpaa.2002.1.1

[5]

Xiu Ye, Shangyou Zhang. A stabilizer free WG method for the Stokes equations with order two superconvergence on polytopal mesh. Electronic Research Archive, 2021, 29 (6) : 3609-3627. doi: 10.3934/era.2021053

[6]

Roberto Camassa, Pao-Hsiung Chiu, Long Lee, W.-H. Sheu. A particle method and numerical study of a quasilinear partial differential equation. Communications on Pure & Applied Analysis, 2011, 10 (5) : 1503-1515. doi: 10.3934/cpaa.2011.10.1503

[7]

Yanfei Wang, Qinghua Ma. A gradient method for regularizing retrieval of aerosol particle size distribution function. Journal of Industrial & Management Optimization, 2009, 5 (1) : 115-126. doi: 10.3934/jimo.2009.5.115

[8]

Xin Li, Feng Bao, Kyle Gallivan. A drift homotopy implicit particle filter method for nonlinear filtering problems. Discrete & Continuous Dynamical Systems - S, 2021  doi: 10.3934/dcdss.2021097

[9]

Xiaoxue Gong, Ying Xu, Vinay Mahadeo, Tulin Kaman, Johan Larsson, James Glimm. Mesh convergence for turbulent combustion. Discrete & Continuous Dynamical Systems, 2016, 36 (8) : 4383-4402. doi: 10.3934/dcds.2016.36.4383

[10]

Vincent Ducrot, Pascal Frey, Alexandra Claisse. Levelsets and anisotropic mesh adaptation. Discrete & Continuous Dynamical Systems, 2009, 23 (1&2) : 165-183. doi: 10.3934/dcds.2009.23.165

[11]

Jean Dolbeault, Maria J. Esteban, Michał Kowalczyk, Michael Loss. Improved interpolation inequalities on the sphere. Discrete & Continuous Dynamical Systems - S, 2014, 7 (4) : 695-724. doi: 10.3934/dcdss.2014.7.695

[12]

Charles Fefferman. Interpolation by linear programming I. Discrete & Continuous Dynamical Systems, 2011, 30 (2) : 477-492. doi: 10.3934/dcds.2011.30.477

[13]

Birol Yüceoǧlu, ş. ilker Birbil, özgür Gürbüz. Dispersion with connectivity in wireless mesh networks. Journal of Industrial & Management Optimization, 2018, 14 (2) : 759-784. doi: 10.3934/jimo.2017074

[14]

Anh N. Le. Sublacunary sets and interpolation sets for nilsequences. Discrete & Continuous Dynamical Systems, 2021  doi: 10.3934/dcds.2021175

[15]

Omar Saber Qasim, Ahmed Entesar, Waleed Al-Hayani. Solving nonlinear differential equations using hybrid method between Lyapunov's artificial small parameter and continuous particle swarm optimization. Numerical Algebra, Control & Optimization, 2021, 11 (4) : 633-644. doi: 10.3934/naco.2021001

[16]

Nahid Banihashemi, C. Yalçın Kaya. Inexact restoration and adaptive mesh refinement for optimal control. Journal of Industrial & Management Optimization, 2014, 10 (2) : 521-542. doi: 10.3934/jimo.2014.10.521

[17]

Yvon Maday, Ngoc Cuong Nguyen, Anthony T. Patera, S. H. Pau. A general multipurpose interpolation procedure: the magic points. Communications on Pure & Applied Analysis, 2009, 8 (1) : 383-404. doi: 10.3934/cpaa.2009.8.383

[18]

Vyacheslav K. Isaev, Vyacheslav V. Zolotukhin. Introduction to the theory of splines with an optimal mesh. Linear Chebyshev splines and applications. Numerical Algebra, Control & Optimization, 2013, 3 (3) : 471-489. doi: 10.3934/naco.2013.3.471

[19]

Zheng-Ru Zhang, Tao Tang. An adaptive mesh redistribution algorithm for convection-dominated problems. Communications on Pure & Applied Analysis, 2002, 1 (3) : 341-357. doi: 10.3934/cpaa.2002.1.341

[20]

Luís Tiago Paiva, Fernando A. C. C. Fontes. Adaptive time--mesh refinement in optimal control problems with state constraints. Discrete & Continuous Dynamical Systems, 2015, 35 (9) : 4553-4572. doi: 10.3934/dcds.2015.35.4553

2020 Impact Factor: 1.327

Metrics

  • PDF downloads (542)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]