-
Previous Article
Jet schemes for advection problems
- DCDS-B Home
- This Issue
-
Next Article
Error estimation for immersed interface solutions
Accurate two and three dimensional interpolation for particle mesh calculations
1. | Mathematics Department, Baruch College CUNY, New York, NY, United States |
References:
[1] |
C. Anderson, A method of local corrections for computing the velocity field due to a distribution of vortex blobs, J. Comp. Phys., 62 (1986), 111-123.
doi: 10.1016/0021-9991(86)90102-6. |
[2] |
K. Atkinson, "An Introduction to Numerical Analysis," John Wiley & Sons, New York-Chichester-Brisbane, 1978. |
[3] |
C. K. Birdsall and W. Bridges, Space-charge instabilities in electron diodes and plasma converters, J. Appl. Phys., 32 (1961), 2611-2618.
doi: 10.1063/1.1728361. |
[4] |
O. Buneman, Dissipation of currents in ionised media, Phys. Rev., 115 (1959), 503-517.
doi: 10.1103/PhysRev.115.503. |
[5] |
P. Colella and P. Norgaard, Controlling self-force errors at refinement boundaries for AMR-PIC, J. Comp. Phys., 299 (2010), 947-957.
doi: 10.1016/j.jcp.2009.07.004. |
[6] |
H. Engels, "Numerical Cubature and Quadrature," Computational Mathematics and Applications, Academic Press, Inc. [Harcourt Brace Jovanovich, Publishers], London-New York, 1980. |
[7] |
M. Gupta, R. Mandohar and J. Stephenson, High-order difference scheme for two dimensional elliptic equations, Numer. Methods Partial Differential Equations, 1 (1985), 71-80.
doi: 10.1002/num.1690010108. |
[8] |
R. Hockney, R. Warriner and J. Reiset, Two dimensional particle models in semiconductor device analysis, Electron. Lett., 10 (1974), 484-486.
doi: 10.1049/el:19740386. |
[9] |
R. Hockney and J. Eastwood, "Computer Simulation Using Particles," McGraw Hill, New York, 1979. |
[10] |
R. Lynch and J. Rice, A high-order difference method for differential equations, Math. Comp., 34 (1980), 333-372. |
[11] |
A. Mayo, Fast, high order accurate solution of Laplace's equation on irregular regions, SIAM J. Sci. and Stat. Comput., 6 (1985), 144-157.
doi: 10.1137/0906012. |
[12] |
C. Peskin, Numerical analysis of blood flow in the heart, J. Comp. Phys, 25 (1977), 220-252.
doi: 10.1016/0021-9991(77)90100-0. |
show all references
References:
[1] |
C. Anderson, A method of local corrections for computing the velocity field due to a distribution of vortex blobs, J. Comp. Phys., 62 (1986), 111-123.
doi: 10.1016/0021-9991(86)90102-6. |
[2] |
K. Atkinson, "An Introduction to Numerical Analysis," John Wiley & Sons, New York-Chichester-Brisbane, 1978. |
[3] |
C. K. Birdsall and W. Bridges, Space-charge instabilities in electron diodes and plasma converters, J. Appl. Phys., 32 (1961), 2611-2618.
doi: 10.1063/1.1728361. |
[4] |
O. Buneman, Dissipation of currents in ionised media, Phys. Rev., 115 (1959), 503-517.
doi: 10.1103/PhysRev.115.503. |
[5] |
P. Colella and P. Norgaard, Controlling self-force errors at refinement boundaries for AMR-PIC, J. Comp. Phys., 299 (2010), 947-957.
doi: 10.1016/j.jcp.2009.07.004. |
[6] |
H. Engels, "Numerical Cubature and Quadrature," Computational Mathematics and Applications, Academic Press, Inc. [Harcourt Brace Jovanovich, Publishers], London-New York, 1980. |
[7] |
M. Gupta, R. Mandohar and J. Stephenson, High-order difference scheme for two dimensional elliptic equations, Numer. Methods Partial Differential Equations, 1 (1985), 71-80.
doi: 10.1002/num.1690010108. |
[8] |
R. Hockney, R. Warriner and J. Reiset, Two dimensional particle models in semiconductor device analysis, Electron. Lett., 10 (1974), 484-486.
doi: 10.1049/el:19740386. |
[9] |
R. Hockney and J. Eastwood, "Computer Simulation Using Particles," McGraw Hill, New York, 1979. |
[10] |
R. Lynch and J. Rice, A high-order difference method for differential equations, Math. Comp., 34 (1980), 333-372. |
[11] |
A. Mayo, Fast, high order accurate solution of Laplace's equation on irregular regions, SIAM J. Sci. and Stat. Comput., 6 (1985), 144-157.
doi: 10.1137/0906012. |
[12] |
C. Peskin, Numerical analysis of blood flow in the heart, J. Comp. Phys, 25 (1977), 220-252.
doi: 10.1016/0021-9991(77)90100-0. |
[1] |
Rongjie Lai, Jiang Liang, Hong-Kai Zhao. A local mesh method for solving PDEs on point clouds. Inverse Problems and Imaging, 2013, 7 (3) : 737-755. doi: 10.3934/ipi.2013.7.737 |
[2] |
Noah Stevenson, Ian Tice. A truncated real interpolation method and characterizations of screened Sobolev spaces. Communications on Pure and Applied Analysis, 2020, 19 (12) : 5509-5566. doi: 10.3934/cpaa.2020250 |
[3] |
José Antonio Carrillo, Yanghong Huang, Francesco Saverio Patacchini, Gershon Wolansky. Numerical study of a particle method for gradient flows. Kinetic and Related Models, 2017, 10 (3) : 613-641. doi: 10.3934/krm.2017025 |
[4] |
Hector D. Ceniceros. A semi-implicit moving mesh method for the focusing nonlinear Schrödinger equation. Communications on Pure and Applied Analysis, 2002, 1 (1) : 1-18. doi: 10.3934/cpaa.2002.1.1 |
[5] |
Xiu Ye, Shangyou Zhang. A stabilizer free WG method for the Stokes equations with order two superconvergence on polytopal mesh. Electronic Research Archive, 2021, 29 (6) : 3609-3627. doi: 10.3934/era.2021053 |
[6] |
Roberto Camassa, Pao-Hsiung Chiu, Long Lee, W.-H. Sheu. A particle method and numerical study of a quasilinear partial differential equation. Communications on Pure and Applied Analysis, 2011, 10 (5) : 1503-1515. doi: 10.3934/cpaa.2011.10.1503 |
[7] |
Yanfei Wang, Qinghua Ma. A gradient method for regularizing retrieval of aerosol particle size distribution function. Journal of Industrial and Management Optimization, 2009, 5 (1) : 115-126. doi: 10.3934/jimo.2009.5.115 |
[8] |
Xin Li, Feng Bao, Kyle Gallivan. A drift homotopy implicit particle filter method for nonlinear filtering problems. Discrete and Continuous Dynamical Systems - S, 2022, 15 (4) : 727-746. doi: 10.3934/dcdss.2021097 |
[9] |
Xiaoxue Gong, Ying Xu, Vinay Mahadeo, Tulin Kaman, Johan Larsson, James Glimm. Mesh convergence for turbulent combustion. Discrete and Continuous Dynamical Systems, 2016, 36 (8) : 4383-4402. doi: 10.3934/dcds.2016.36.4383 |
[10] |
Vincent Ducrot, Pascal Frey, Alexandra Claisse. Levelsets and anisotropic mesh adaptation. Discrete and Continuous Dynamical Systems, 2009, 23 (1&2) : 165-183. doi: 10.3934/dcds.2009.23.165 |
[11] |
Jean Dolbeault, Maria J. Esteban, Michał Kowalczyk, Michael Loss. Improved interpolation inequalities on the sphere. Discrete and Continuous Dynamical Systems - S, 2014, 7 (4) : 695-724. doi: 10.3934/dcdss.2014.7.695 |
[12] |
Charles Fefferman. Interpolation by linear programming I. Discrete and Continuous Dynamical Systems, 2011, 30 (2) : 477-492. doi: 10.3934/dcds.2011.30.477 |
[13] |
Birol Yüceoǧlu, ş. ilker Birbil, özgür Gürbüz. Dispersion with connectivity in wireless mesh networks. Journal of Industrial and Management Optimization, 2018, 14 (2) : 759-784. doi: 10.3934/jimo.2017074 |
[14] |
Anh N. Le. Sublacunary sets and interpolation sets for nilsequences. Discrete and Continuous Dynamical Systems, 2022, 42 (4) : 1855-1871. doi: 10.3934/dcds.2021175 |
[15] |
Jean Dolbeault, An Zhang. Parabolic methods for ultraspherical interpolation inequalities. Discrete and Continuous Dynamical Systems, 2022 doi: 10.3934/dcds.2022080 |
[16] |
Omar Saber Qasim, Ahmed Entesar, Waleed Al-Hayani. Solving nonlinear differential equations using hybrid method between Lyapunov's artificial small parameter and continuous particle swarm optimization. Numerical Algebra, Control and Optimization, 2021, 11 (4) : 633-644. doi: 10.3934/naco.2021001 |
[17] |
Nahid Banihashemi, C. Yalçın Kaya. Inexact restoration and adaptive mesh refinement for optimal control. Journal of Industrial and Management Optimization, 2014, 10 (2) : 521-542. doi: 10.3934/jimo.2014.10.521 |
[18] |
Yvon Maday, Ngoc Cuong Nguyen, Anthony T. Patera, S. H. Pau. A general multipurpose interpolation procedure: the magic points. Communications on Pure and Applied Analysis, 2009, 8 (1) : 383-404. doi: 10.3934/cpaa.2009.8.383 |
[19] |
Tony Lyons. Particle paths in equatorial flows. Communications on Pure and Applied Analysis, 2022, 21 (7) : 2399-2414. doi: 10.3934/cpaa.2022041 |
[20] |
Vyacheslav K. Isaev, Vyacheslav V. Zolotukhin. Introduction to the theory of splines with an optimal mesh. Linear Chebyshev splines and applications. Numerical Algebra, Control and Optimization, 2013, 3 (3) : 471-489. doi: 10.3934/naco.2013.3.471 |
2021 Impact Factor: 1.497
Tools
Metrics
Other articles
by authors
[Back to Top]