-
Previous Article
Symmetric error estimates for discontinuous Galerkin approximations for an optimal control problem associated to semilinear parabolic PDE's
- DCDS-B Home
- This Issue
-
Next Article
Asymptotic behavior for a stochastic wave equation with dynamical boundary conditions
The Euler-Maruyama approximation for the absorption time of the CEV diffusion
1. | Department of Statistics, The Hebrew University, Mount Scopus, Jerusalem 91905, Israel |
2. | School of Mathematical Sciences, Monash University Vic 3800, Australia |
References:
[1] |
V. M. Abramov, F. C. Klebaner and R. Sh. Liptser, The Euler-Maruyama approximations for the CEV model, Discrete Contin. Dyn. Syst. Ser. B, 16 (2011), 1-14.
doi: 10.3934/dcdsb.2011.16.1. |
[2] |
R. Avikainen, On irregular functionals of SDEs and the Euler scheme, Finance Stoch., 13 (2009), 381-401.
doi: 10.1007/s00780-009-0099-7. |
[3] |
F. Delbaen and H. Shirakawa, A note on option pricing for the constant elasticity of variance model, Asia-Pacific Financial Markets, 9 (2002), 85-99.
doi: 10.1023/A:1022269617674. |
[4] |
S. N. Ethier, Limit theorems for absorption times of genetic models, Ann. Probab., 7 (1979), 622-638. |
[5] |
S. N. Ethier and T. G. Kurtz, "Markov Processes. Characterization and Convergence,'' Wiley Series in Probability and Mathematical Statistics: Probability and Mathematical Statistics, John Wiley & Sons, Inc., New York, 1986. |
[6] |
M. T. Giraudo and L. Sacerdote, An improved technique for the simulation of first passage times for diffusion processes, Comm. Statist. Simulation Comput., 28 (1999), 1135-1163.
doi: 10.1080/03610919908813596. |
[7] |
M. T. Giraudo, L. Sacerdote and C. Zucca, A Monte Carlo method for the simulation of first passage times of diffusion processes, Methodol. Comput. Appl. Probab., 3 (2001), 215-231.
doi: 10.1023/A:1012261328124. |
[8] |
E. Gobet, Weak approximation of killed diffusion using Euler schemes, Stochastic Process. Appl., 87 (2000), 167-197.
doi: 10.1016/S0304-4149(99)00109-X. |
[9] |
E. Gobet and S. Menozzi, Exact approximation rate of killed hypoelliptic diffusions using the discrete Euler scheme, Stochastic Process. Appl., 112 (2004), 201-223.
doi: 10.1016/j.spa.2004.03.002. |
[10] |
K. Helmes, S. Röhl and R. H. Stockbridge, Computing moments of the exit time distribution for Markov processes by linear programming, Oper. Res., 49 (2001), 516-530.
doi: 10.1287/opre.49.4.516.11221. |
[11] |
J. Jacod and A. N. Shiryaev, "Limit Theorems for Stochastic Processes,'' Second edition, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], 288, Springer-Verlag, Berlin, 2003. |
[12] |
K. M. Jansons and G. D. Lythe, Exponential timestepping with boundary test for stochastic differential equations, SIAM J. Sci. Comput., 24 (2003), 1809-1822 (electronic).
doi: 10.1137/S1064827501399535. |
[13] |
S. Karlin and H. M. Taylor, "A Second Course in Stochastic Processes,'' Academic Press, Inc. [Harcourt Brace Jovanovich, Publishers], New York-London, 1981. |
[14] |
F. C. Klebaner, "Introduction to Stochastic Calculus with Applications,'' Second edition, Imperial College Press, London, 2005. |
[15] |
P. E. Kloeden and E. Platen, "Numerical Solution of Stochastic Differential Equations,'' Applications of Mathematics (New York), 23, Springer-Verlag, Berlin, 1992. |
[16] |
R. Korn, E. Korn and G. Kroisandt, "Monte Carlo Methods and Models in Finance and Insurance,'' Chapman & Hall/CRC Financial Mathematics Series, CRC Press, Boca Raton, FL, 2010. |
[17] |
P. Lánský and V. Lánská, First-passage-time problem for simulated stochastic diffusion processes, Comput. Biol. Med., 24 (1994), 91-101. |
[18] |
R. Sh. Liptser and A. N. Shiryayev, "Theory of Martingales,'' Mathematics and its Applications (Soviet Series), 49, Kluwer Academic Publishers Group, Dordrecht, 1989. |
[19] |
G. N. Mil'shteĭn, Solution of the first boundary value problem for equations of parabolic type by means of the integration of stochastic differential equations, Teor. Veroyatnost. i Primenen., 40 (1995), 657-665. |
[20] |
G. N. Mil'shteĭn and M. V. Tret'yakov, The simplest random walks for the Dirichlet problem, Teor. Veroyatnost. i Primenen., 47 (2002), 39-58. |
[21] |
G. N. Mil'shteĭn and M. V. Tret'yakov, Simulation of a space-time bounded diffusion, Ann. Appl. Probab., 9 (1999), 732-779.
doi: 10.1214/aoap/1029962812. |
[22] |
G. N. Mil'shteĭn and M. V. Tret'yakov, "Stochastic Numerics for Mathematical Physics,'' Scientific Computation, Springer-Verlag, Berlin, 2004. |
[23] |
L. C. G. Rogers and D. Williams, "Diffusions, Markov processes, and Martingales. Vol. 1. Foundations," Reprint of the second (1994) edition, Cambridge Mathematical Library, Cambridge University Press, Cambridge, 2000. |
[24] |
L. C. G. Rogers and D. Williams, "Diffusions, Markov processes, and Martingales. Vol. 2. Itô Calculus," Reprint of the second (1994) edition, Cambridge Mathematical Library, Cambridge University Press, Cambridge, 2000. |
[25] |
A. N. Shiryaev, "Probability,'' Second edition, Graduate Texts in Mathematics, 95, Springer-Verlag, New York, 1996. |
[26] |
L. Yan, The Euler scheme with irregular coefficients, Ann. Probab., 30 (2002), 1172-1194. |
[27] |
H. Zähle, Weak approximation of SDEs by discrete-time processes, J. Appl. Math. Stoch. Anal., 2008, Art. ID 275747, 15 pp. |
show all references
References:
[1] |
V. M. Abramov, F. C. Klebaner and R. Sh. Liptser, The Euler-Maruyama approximations for the CEV model, Discrete Contin. Dyn. Syst. Ser. B, 16 (2011), 1-14.
doi: 10.3934/dcdsb.2011.16.1. |
[2] |
R. Avikainen, On irregular functionals of SDEs and the Euler scheme, Finance Stoch., 13 (2009), 381-401.
doi: 10.1007/s00780-009-0099-7. |
[3] |
F. Delbaen and H. Shirakawa, A note on option pricing for the constant elasticity of variance model, Asia-Pacific Financial Markets, 9 (2002), 85-99.
doi: 10.1023/A:1022269617674. |
[4] |
S. N. Ethier, Limit theorems for absorption times of genetic models, Ann. Probab., 7 (1979), 622-638. |
[5] |
S. N. Ethier and T. G. Kurtz, "Markov Processes. Characterization and Convergence,'' Wiley Series in Probability and Mathematical Statistics: Probability and Mathematical Statistics, John Wiley & Sons, Inc., New York, 1986. |
[6] |
M. T. Giraudo and L. Sacerdote, An improved technique for the simulation of first passage times for diffusion processes, Comm. Statist. Simulation Comput., 28 (1999), 1135-1163.
doi: 10.1080/03610919908813596. |
[7] |
M. T. Giraudo, L. Sacerdote and C. Zucca, A Monte Carlo method for the simulation of first passage times of diffusion processes, Methodol. Comput. Appl. Probab., 3 (2001), 215-231.
doi: 10.1023/A:1012261328124. |
[8] |
E. Gobet, Weak approximation of killed diffusion using Euler schemes, Stochastic Process. Appl., 87 (2000), 167-197.
doi: 10.1016/S0304-4149(99)00109-X. |
[9] |
E. Gobet and S. Menozzi, Exact approximation rate of killed hypoelliptic diffusions using the discrete Euler scheme, Stochastic Process. Appl., 112 (2004), 201-223.
doi: 10.1016/j.spa.2004.03.002. |
[10] |
K. Helmes, S. Röhl and R. H. Stockbridge, Computing moments of the exit time distribution for Markov processes by linear programming, Oper. Res., 49 (2001), 516-530.
doi: 10.1287/opre.49.4.516.11221. |
[11] |
J. Jacod and A. N. Shiryaev, "Limit Theorems for Stochastic Processes,'' Second edition, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], 288, Springer-Verlag, Berlin, 2003. |
[12] |
K. M. Jansons and G. D. Lythe, Exponential timestepping with boundary test for stochastic differential equations, SIAM J. Sci. Comput., 24 (2003), 1809-1822 (electronic).
doi: 10.1137/S1064827501399535. |
[13] |
S. Karlin and H. M. Taylor, "A Second Course in Stochastic Processes,'' Academic Press, Inc. [Harcourt Brace Jovanovich, Publishers], New York-London, 1981. |
[14] |
F. C. Klebaner, "Introduction to Stochastic Calculus with Applications,'' Second edition, Imperial College Press, London, 2005. |
[15] |
P. E. Kloeden and E. Platen, "Numerical Solution of Stochastic Differential Equations,'' Applications of Mathematics (New York), 23, Springer-Verlag, Berlin, 1992. |
[16] |
R. Korn, E. Korn and G. Kroisandt, "Monte Carlo Methods and Models in Finance and Insurance,'' Chapman & Hall/CRC Financial Mathematics Series, CRC Press, Boca Raton, FL, 2010. |
[17] |
P. Lánský and V. Lánská, First-passage-time problem for simulated stochastic diffusion processes, Comput. Biol. Med., 24 (1994), 91-101. |
[18] |
R. Sh. Liptser and A. N. Shiryayev, "Theory of Martingales,'' Mathematics and its Applications (Soviet Series), 49, Kluwer Academic Publishers Group, Dordrecht, 1989. |
[19] |
G. N. Mil'shteĭn, Solution of the first boundary value problem for equations of parabolic type by means of the integration of stochastic differential equations, Teor. Veroyatnost. i Primenen., 40 (1995), 657-665. |
[20] |
G. N. Mil'shteĭn and M. V. Tret'yakov, The simplest random walks for the Dirichlet problem, Teor. Veroyatnost. i Primenen., 47 (2002), 39-58. |
[21] |
G. N. Mil'shteĭn and M. V. Tret'yakov, Simulation of a space-time bounded diffusion, Ann. Appl. Probab., 9 (1999), 732-779.
doi: 10.1214/aoap/1029962812. |
[22] |
G. N. Mil'shteĭn and M. V. Tret'yakov, "Stochastic Numerics for Mathematical Physics,'' Scientific Computation, Springer-Verlag, Berlin, 2004. |
[23] |
L. C. G. Rogers and D. Williams, "Diffusions, Markov processes, and Martingales. Vol. 1. Foundations," Reprint of the second (1994) edition, Cambridge Mathematical Library, Cambridge University Press, Cambridge, 2000. |
[24] |
L. C. G. Rogers and D. Williams, "Diffusions, Markov processes, and Martingales. Vol. 2. Itô Calculus," Reprint of the second (1994) edition, Cambridge Mathematical Library, Cambridge University Press, Cambridge, 2000. |
[25] |
A. N. Shiryaev, "Probability,'' Second edition, Graduate Texts in Mathematics, 95, Springer-Verlag, New York, 1996. |
[26] |
L. Yan, The Euler scheme with irregular coefficients, Ann. Probab., 30 (2002), 1172-1194. |
[27] |
H. Zähle, Weak approximation of SDEs by discrete-time processes, J. Appl. Math. Stoch. Anal., 2008, Art. ID 275747, 15 pp. |
[1] |
Vyacheslav M. Abramov, Fima C. Klebaner, Robert Sh. Lipster. The Euler-Maruyama approximations for the CEV model. Discrete and Continuous Dynamical Systems - B, 2011, 16 (1) : 1-14. doi: 10.3934/dcdsb.2011.16.1 |
[2] |
Wei Mao, Liangjian Hu, Xuerong Mao. Asymptotic boundedness and stability of solutions to hybrid stochastic differential equations with jumps and the Euler-Maruyama approximation. Discrete and Continuous Dynamical Systems - B, 2019, 24 (2) : 587-613. doi: 10.3934/dcdsb.2018198 |
[3] |
Benoît Merlet, Morgan Pierre. Convergence to equilibrium for the backward Euler scheme and applications. Communications on Pure and Applied Analysis, 2010, 9 (3) : 685-702. doi: 10.3934/cpaa.2010.9.685 |
[4] |
Bahareh Akhtari, Esmail Babolian, Andreas Neuenkirch. An Euler scheme for stochastic delay differential equations on unbounded domains: Pathwise convergence. Discrete and Continuous Dynamical Systems - B, 2015, 20 (1) : 23-38. doi: 10.3934/dcdsb.2015.20.23 |
[5] |
Igor Pažanin, Marcone C. Pereira. On the nonlinear convection-diffusion-reaction problem in a thin domain with a weak boundary absorption. Communications on Pure and Applied Analysis, 2018, 17 (2) : 579-592. doi: 10.3934/cpaa.2018031 |
[6] |
Weiyin Fei, Liangjian Hu, Xuerong Mao, Dengfeng Xia. Advances in the truncated Euler–Maruyama method for stochastic differential delay equations. Communications on Pure and Applied Analysis, 2020, 19 (4) : 2081-2100. doi: 10.3934/cpaa.2020092 |
[7] |
Xiaojie Wang. Weak error estimates of the exponential Euler scheme for semi-linear SPDEs without Malliavin calculus. Discrete and Continuous Dynamical Systems, 2016, 36 (1) : 481-497. doi: 10.3934/dcds.2016.36.481 |
[8] |
Maurizio Grasselli, Morgan Pierre. Convergence to equilibrium of solutions of the backward Euler scheme for asymptotically autonomous second-order gradient-like systems. Communications on Pure and Applied Analysis, 2012, 11 (6) : 2393-2416. doi: 10.3934/cpaa.2012.11.2393 |
[9] |
Monika Eisenmann, Etienne Emmrich, Volker Mehrmann. Convergence of the backward Euler scheme for the operator-valued Riccati differential equation with semi-definite data. Evolution Equations and Control Theory, 2019, 8 (2) : 315-342. doi: 10.3934/eect.2019017 |
[10] |
Jian Su, Yinnian He. The almost unconditional convergence of the Euler implicit/explicit scheme for the three dimensional nonstationary Navier-Stokes equations. Discrete and Continuous Dynamical Systems - B, 2017, 22 (9) : 3421-3438. doi: 10.3934/dcdsb.2017173 |
[11] |
Matúš Tibenský, Angela Handlovičová. Convergence analysis of the discrete duality finite volume scheme for the regularised Heston model. Discrete and Continuous Dynamical Systems - S, 2021, 14 (3) : 1181-1195. doi: 10.3934/dcdss.2020226 |
[12] |
Sebastián Ferrer, Francisco Crespo. Parametric quartic Hamiltonian model. A unified treatment of classic integrable systems. Journal of Geometric Mechanics, 2014, 6 (4) : 479-502. doi: 10.3934/jgm.2014.6.479 |
[13] |
Ghendrih Philippe, Hauray Maxime, Anne Nouri. Derivation of a gyrokinetic model. Existence and uniqueness of specific stationary solution. Kinetic and Related Models, 2009, 2 (4) : 707-725. doi: 10.3934/krm.2009.2.707 |
[14] |
Matania Ben–Artzi, Joseph Falcovitz, Jiequan Li. The convergence of the GRP scheme. Discrete and Continuous Dynamical Systems, 2009, 23 (1&2) : 1-27. doi: 10.3934/dcds.2009.23.1 |
[15] |
Yuxi Zheng. Absorption of characteristics by sonic curve of the two-dimensional Euler equations. Discrete and Continuous Dynamical Systems, 2009, 23 (1&2) : 605-616. doi: 10.3934/dcds.2009.23.605 |
[16] |
Mostafa Bendahmane, Mauricio Sepúlveda. Convergence of a finite volume scheme for nonlocal reaction-diffusion systems modelling an epidemic disease. Discrete and Continuous Dynamical Systems - B, 2009, 11 (4) : 823-853. doi: 10.3934/dcdsb.2009.11.823 |
[17] |
Stéphane Brull, Pierre Degond, Fabrice Deluzet, Alexandre Mouton. Asymptotic-preserving scheme for a bi-fluid Euler-Lorentz model. Kinetic and Related Models, 2011, 4 (4) : 991-1023. doi: 10.3934/krm.2011.4.991 |
[18] |
Fuke Wu, Xuerong Mao, Peter E. Kloeden. Discrete Razumikhin-type technique and stability of the Euler--Maruyama method to stochastic functional differential equations. Discrete and Continuous Dynamical Systems, 2013, 33 (2) : 885-903. doi: 10.3934/dcds.2013.33.885 |
[19] |
Xinjie Dai, Aiguo Xiao, Weiping Bu. Stochastic fractional integro-differential equations with weakly singular kernels: Well-posedness and Euler–Maruyama approximation. Discrete and Continuous Dynamical Systems - B, 2021 doi: 10.3934/dcdsb.2021225 |
[20] |
Rinaldo M. Colombo, Francesca Marcellini. Coupling conditions for the $3\times 3$ Euler system. Networks and Heterogeneous Media, 2010, 5 (4) : 675-690. doi: 10.3934/nhm.2010.5.675 |
2020 Impact Factor: 1.327
Tools
Metrics
Other articles
by authors
[Back to Top]