September  2012, 17(6): 1761-1774. doi: 10.3934/dcdsb.2012.17.1761

Dead-core rates for the porous medium equation with a strong absorption

1. 

Department of Mathematics, University of Pittsburgh, Pittsburgh, PA 15260

2. 

Department of Mathematics, Tamkang University, Tamsui, Taipei County 25137

3. 

Department of Applied and Computational Mathematics and Statistics, University of Notre Dame, Notre Dame, IN 46556

Received  March 2011 Revised  August 2011 Published  May 2012

We study the dead-core rate for the solution of the porous medium equation with a strong absorption. It is known that solutions with certain class of initial data develop a dead-core in finite time. We prove that, unlike the cases of semilinear heat equation and fast diffusion equation, there are solutions with the self-similar dead-core rate. This result is based on the construction of a Lyapunov functional, some a priori estimates, and a delicate analysis of the associated re-scaled ordinary differential equation.
Citation: Xinfu Chen, Jong-Shenq Guo, Bei Hu. Dead-core rates for the porous medium equation with a strong absorption. Discrete & Continuous Dynamical Systems - B, 2012, 17 (6) : 1761-1774. doi: 10.3934/dcdsb.2012.17.1761
References:
[1]

C. Bandle, T. Nanbu and I. Stakgold, Porous medium equation with absorption,, SIAM J. Math. Anal., 29 (1998), 1268.  doi: 10.1137/S0036141096311423.  Google Scholar

[2]

C. Bandle and I. Stakgold, The formation of the dead core in parabolic reaction-diffusion problems,, Trans. Amer. Math. Soc., 286 (1984), 275.  doi: 10.1090/S0002-9947-1984-0756040-1.  Google Scholar

[3]

Q. Chen and L. Wang, On the dead core behavior for a semilinear heat equation,, Math. Appl. (Wuhan), 10 (1997), 22.   Google Scholar

[4]

J.-S. Guo and B. Hu, Quenching profile for a quasilinear parabolic equation,, Quarterly Appl. Math., 58 (2000), 613.   Google Scholar

[5]

J.-S. Guo, C.-T. Ling and Ph. Souplet, Non-self-similar dead-core rate for the fast diffusion equation with strong absorption,, Nonlinearity, 23 (2010), 657.  doi: 10.1088/0951-7715/23/3/013.  Google Scholar

[6]

J.-S. Guo, H. Matano and C.-C. Wu, An application of braid group theory to the finite time dead-core rate,, J. Evolution Equations, 10 (2010), 835.  doi: 10.1007/s00028-010-0072-0.  Google Scholar

[7]

J.-S. Guo and Ph. Souplet, Fast rate of formation of dead-core for the heat equation with strong absorption and applications to fast blow-up,, Math. Ann., 331 (2005), 651.  doi: 10.1007/s00208-004-0601-7.  Google Scholar

[8]

J.-S. Guo and C.-C. Wu, Finite time dead-core rate for the heat equation with a strong absorption,, Tohoku Math. J. (2), 60 (2008), 37.  doi: 10.2748/tmj/1206734406.  Google Scholar

[9]

Y. Seki, On exact dead-core rates for a semilinear heat equation with strong absorption,, Commun. Contemp. Math., 13 (2011), 1.   Google Scholar

[10]

I. Stakgold, Reaction-diffusion problems in chemical engineering,, in, 1224 (1986), 119.   Google Scholar

[11]

T. I. Zelenjak, Stabilization of solutions of boundary value problems for a second order parabolic equation with one space variable,, Differential Equations, 4 (1968), 17.   Google Scholar

show all references

References:
[1]

C. Bandle, T. Nanbu and I. Stakgold, Porous medium equation with absorption,, SIAM J. Math. Anal., 29 (1998), 1268.  doi: 10.1137/S0036141096311423.  Google Scholar

[2]

C. Bandle and I. Stakgold, The formation of the dead core in parabolic reaction-diffusion problems,, Trans. Amer. Math. Soc., 286 (1984), 275.  doi: 10.1090/S0002-9947-1984-0756040-1.  Google Scholar

[3]

Q. Chen and L. Wang, On the dead core behavior for a semilinear heat equation,, Math. Appl. (Wuhan), 10 (1997), 22.   Google Scholar

[4]

J.-S. Guo and B. Hu, Quenching profile for a quasilinear parabolic equation,, Quarterly Appl. Math., 58 (2000), 613.   Google Scholar

[5]

J.-S. Guo, C.-T. Ling and Ph. Souplet, Non-self-similar dead-core rate for the fast diffusion equation with strong absorption,, Nonlinearity, 23 (2010), 657.  doi: 10.1088/0951-7715/23/3/013.  Google Scholar

[6]

J.-S. Guo, H. Matano and C.-C. Wu, An application of braid group theory to the finite time dead-core rate,, J. Evolution Equations, 10 (2010), 835.  doi: 10.1007/s00028-010-0072-0.  Google Scholar

[7]

J.-S. Guo and Ph. Souplet, Fast rate of formation of dead-core for the heat equation with strong absorption and applications to fast blow-up,, Math. Ann., 331 (2005), 651.  doi: 10.1007/s00208-004-0601-7.  Google Scholar

[8]

J.-S. Guo and C.-C. Wu, Finite time dead-core rate for the heat equation with a strong absorption,, Tohoku Math. J. (2), 60 (2008), 37.  doi: 10.2748/tmj/1206734406.  Google Scholar

[9]

Y. Seki, On exact dead-core rates for a semilinear heat equation with strong absorption,, Commun. Contemp. Math., 13 (2011), 1.   Google Scholar

[10]

I. Stakgold, Reaction-diffusion problems in chemical engineering,, in, 1224 (1986), 119.   Google Scholar

[11]

T. I. Zelenjak, Stabilization of solutions of boundary value problems for a second order parabolic equation with one space variable,, Differential Equations, 4 (1968), 17.   Google Scholar

[1]

Kuo-Chih Hung, Shin-Hwa Wang. Classification and evolution of bifurcation curves for a porous-medium combustion problem with large activation energy. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020281

[2]

Nicolas Dirr, Hubertus Grillmeier, Günther Grün. On stochastic porous-medium equations with critical-growth conservative multiplicative noise. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020388

[3]

Biyue Chen, Chunxiang Zhao, Chengkui Zhong. The global attractor for the wave equation with nonlocal strong damping. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021015

[4]

Xuefei He, Kun Wang, Liwei Xu. Efficient finite difference methods for the nonlinear Helmholtz equation in Kerr medium. Electronic Research Archive, 2020, 28 (4) : 1503-1528. doi: 10.3934/era.2020079

[5]

Patrick Martinez, Judith Vancostenoble. Lipschitz stability for the growth rate coefficients in a nonlinear Fisher-KPP equation. Discrete & Continuous Dynamical Systems - S, 2021, 14 (2) : 695-721. doi: 10.3934/dcdss.2020362

[6]

Alex H. Ardila, Mykael Cardoso. Blow-up solutions and strong instability of ground states for the inhomogeneous nonlinear Schrödinger equation. Communications on Pure & Applied Analysis, 2021, 20 (1) : 101-119. doi: 10.3934/cpaa.2020259

[7]

Yuxi Zheng. Absorption of characteristics by sonic curve of the two-dimensional Euler equations. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 605-616. doi: 10.3934/dcds.2009.23.605

[8]

Eduard Marušić-Paloka, Igor Pažanin. Homogenization and singular perturbation in porous media. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020279

[9]

Riccarda Rossi, Ulisse Stefanelli, Marita Thomas. Rate-independent evolution of sets. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 89-119. doi: 10.3934/dcdss.2020304

[10]

Huijuan Song, Bei Hu, Zejia Wang. Stationary solutions of a free boundary problem modeling the growth of vascular tumors with a necrotic core. Discrete & Continuous Dynamical Systems - B, 2021, 26 (1) : 667-691. doi: 10.3934/dcdsb.2020084

[11]

José Luiz Boldrini, Jonathan Bravo-Olivares, Eduardo Notte-Cuello, Marko A. Rojas-Medar. Asymptotic behavior of weak and strong solutions of the magnetohydrodynamic equations. Electronic Research Archive, 2021, 29 (1) : 1783-1801. doi: 10.3934/era.2020091

[12]

Philipp Harms. Strong convergence rates for markovian representations of fractional processes. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020367

[13]

Olivier Pironneau, Alexei Lozinski, Alain Perronnet, Frédéric Hecht. Numerical zoom for multiscale problems with an application to flows through porous media. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 265-280. doi: 10.3934/dcds.2009.23.265

[14]

Jian Zhang, Tony T. Lee, Tong Ye, Liang Huang. An approximate mean queue length formula for queueing systems with varying service rate. Journal of Industrial & Management Optimization, 2021, 17 (1) : 185-204. doi: 10.3934/jimo.2019106

[15]

Juliana Fernandes, Liliane Maia. Blow-up and bounded solutions for a semilinear parabolic problem in a saturable medium. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1297-1318. doi: 10.3934/dcds.2020318

[16]

Josselin Garnier, Knut Sølna. Enhanced Backscattering of a partially coherent field from an anisotropic random lossy medium. Discrete & Continuous Dynamical Systems - B, 2021, 26 (2) : 1171-1195. doi: 10.3934/dcdsb.2020158

[17]

Martin Kalousek, Joshua Kortum, Anja Schlömerkemper. Mathematical analysis of weak and strong solutions to an evolutionary model for magnetoviscoelasticity. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 17-39. doi: 10.3934/dcdss.2020331

[18]

Dorothee Knees, Chiara Zanini. Existence of parameterized BV-solutions for rate-independent systems with discontinuous loads. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 121-149. doi: 10.3934/dcdss.2020332

[19]

Xueli Bai, Fang Li. Global dynamics of competition models with nonsymmetric nonlocal dispersals when one diffusion rate is small. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3075-3092. doi: 10.3934/dcds.2020035

[20]

Xing Wu, Keqin Su. Global existence and optimal decay rate of solutions to hyperbolic chemotaxis system in Besov spaces. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2021002

2019 Impact Factor: 1.27

Metrics

  • PDF downloads (22)
  • HTML views (0)
  • Cited by (5)

Other articles
by authors

[Back to Top]