September  2012, 17(6): 1775-1794. doi: 10.3934/dcdsb.2012.17.1775

Slow manifold reduction of a stochastic chemical reaction: Exploring Keizer's paradox

1. 

Department of Mathematics, University of Utah, Salt Lake City, UT 84112, United States, United States

Received  May 2011 Revised  November 2011 Published  May 2012

Keizer's paradox refers to the observation that deterministic and stochastic descriptions of chemical reactions can predict vastly different long term outcomes. In this paper, we use slow manifold analysis to help resolve this paradox for four variants of a simple autocatalytic reaction. We also provide rigorous estimates of the spectral gap of important linear operators, which establishes parameter ranges in which the slow manifold analysis is appropriate.
Citation: Parker Childs, James P. Keener. Slow manifold reduction of a stochastic chemical reaction: Exploring Keizer's paradox. Discrete & Continuous Dynamical Systems - B, 2012, 17 (6) : 1775-1794. doi: 10.3934/dcdsb.2012.17.1775
References:
[1]

L. J. S. Allen, "An Introduction to Stochastic Processes with Applications to Biology,'', Pearson Education, (2003).   Google Scholar

[2]

J. Beischke, P. Weber, N. Sarafoff, M. Beekes, A. Giese and H. Kretzschmar, Autocatalytic self-propagation of misfolded prion protein,, Proc. Natl. Acad. Sci., 101 (2004), 12207.  doi: 10.1073/pnas.0404650101.  Google Scholar

[3]

C. W. Gardiner, "Handbook of Stochastic Methods. For Physics, Chemistry and the Natural Sciences,'' Second edition,, Springer Series in Synergetics, 13 (1985).   Google Scholar

[4]

B. L. Granovsky and A. I. Zeifman, The decay function of nonhomogeneous birth-death processes, with application to mean-field models,, Stoch. Process. Appl., 72 (1997), 105.  doi: 10.1016/S0304-4149(97)00085-9.  Google Scholar

[5]

B. L. Granovsky and A. I. Zeifman, The $N$-limit of spectral gap of a class of birth-death Markov chains,, Appl. Stoch. Models Bus. Ind., 16 (2000), 235.  doi: 10.1002/1526-4025(200010/12)16:4<235::AID-ASMB415>3.3.CO;2-J.  Google Scholar

[6]

J. Keizer, "Statistical Thermodynamics of Nonequilibrium Processes,'', Springer-Verlag, (1987).   Google Scholar

[7]

T. G. Kurtz, Limit theorems for sequences of jump Markov processes approximating ordinary differential processes,, J. Appl. Prob., 8 (1971), 344.   Google Scholar

[8]

T. G. Kurtz, The relationship between stochastic and deterministic models for chemical reactions,, J. Chem. Phys., 57 (1972), 2976.  doi: 10.1063/1.1678692.  Google Scholar

[9]

I. Nåsell, Extinction and quasi-stationarity in the Verhulst logistic model,, Journal of Theoretical Biology, 211 (2001), 11.  doi: 10.1006/jtbi.2001.2328.  Google Scholar

[10]

H. Qian and L. M. Bishop, The chemical master equation approach to nonequilibrium steady-state of open biochemical systems: Linear single-molecule enzyme kinetics and nonlinear biochemical reaction networks,, Int. J. Mol. Sci., 11 (2010), 3472.  doi: 10.3390/ijms11093472.  Google Scholar

[11]

N. van Kampen, "Stochastic Processes in Physics and Chemistry,'', Lecture Notes in Mathematics, 888 (1981).   Google Scholar

[12]

M. Vellela and H. Qian, A quasistationary analysis of a stochastic chemical reaction: Keizer's paradox,, Bull. Math. Biol., 69 (2007), 1727.  doi: 10.1007/s11538-006-9188-3.  Google Scholar

show all references

References:
[1]

L. J. S. Allen, "An Introduction to Stochastic Processes with Applications to Biology,'', Pearson Education, (2003).   Google Scholar

[2]

J. Beischke, P. Weber, N. Sarafoff, M. Beekes, A. Giese and H. Kretzschmar, Autocatalytic self-propagation of misfolded prion protein,, Proc. Natl. Acad. Sci., 101 (2004), 12207.  doi: 10.1073/pnas.0404650101.  Google Scholar

[3]

C. W. Gardiner, "Handbook of Stochastic Methods. For Physics, Chemistry and the Natural Sciences,'' Second edition,, Springer Series in Synergetics, 13 (1985).   Google Scholar

[4]

B. L. Granovsky and A. I. Zeifman, The decay function of nonhomogeneous birth-death processes, with application to mean-field models,, Stoch. Process. Appl., 72 (1997), 105.  doi: 10.1016/S0304-4149(97)00085-9.  Google Scholar

[5]

B. L. Granovsky and A. I. Zeifman, The $N$-limit of spectral gap of a class of birth-death Markov chains,, Appl. Stoch. Models Bus. Ind., 16 (2000), 235.  doi: 10.1002/1526-4025(200010/12)16:4<235::AID-ASMB415>3.3.CO;2-J.  Google Scholar

[6]

J. Keizer, "Statistical Thermodynamics of Nonequilibrium Processes,'', Springer-Verlag, (1987).   Google Scholar

[7]

T. G. Kurtz, Limit theorems for sequences of jump Markov processes approximating ordinary differential processes,, J. Appl. Prob., 8 (1971), 344.   Google Scholar

[8]

T. G. Kurtz, The relationship between stochastic and deterministic models for chemical reactions,, J. Chem. Phys., 57 (1972), 2976.  doi: 10.1063/1.1678692.  Google Scholar

[9]

I. Nåsell, Extinction and quasi-stationarity in the Verhulst logistic model,, Journal of Theoretical Biology, 211 (2001), 11.  doi: 10.1006/jtbi.2001.2328.  Google Scholar

[10]

H. Qian and L. M. Bishop, The chemical master equation approach to nonequilibrium steady-state of open biochemical systems: Linear single-molecule enzyme kinetics and nonlinear biochemical reaction networks,, Int. J. Mol. Sci., 11 (2010), 3472.  doi: 10.3390/ijms11093472.  Google Scholar

[11]

N. van Kampen, "Stochastic Processes in Physics and Chemistry,'', Lecture Notes in Mathematics, 888 (1981).   Google Scholar

[12]

M. Vellela and H. Qian, A quasistationary analysis of a stochastic chemical reaction: Keizer's paradox,, Bull. Math. Biol., 69 (2007), 1727.  doi: 10.1007/s11538-006-9188-3.  Google Scholar

[1]

M. Phani Sudheer, Ravi S. Nanjundiah, A. S. Vasudeva Murthy. Revisiting the slow manifold of the Lorenz-Krishnamurthy quintet. Discrete & Continuous Dynamical Systems - B, 2006, 6 (6) : 1403-1416. doi: 10.3934/dcdsb.2006.6.1403

[2]

María J. Garrido-Atienza, Bohdan Maslowski, Jana  Šnupárková. Semilinear stochastic equations with bilinear fractional noise. Discrete & Continuous Dynamical Systems - B, 2016, 21 (9) : 3075-3094. doi: 10.3934/dcdsb.2016088

[3]

Xianming Liu, Guangyue Han. A Wong-Zakai approximation of stochastic differential equations driven by a general semimartingale. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2499-2508. doi: 10.3934/dcdsb.2020192

[4]

Y. Latushkin, B. Layton. The optimal gap condition for invariant manifolds. Discrete & Continuous Dynamical Systems - A, 1999, 5 (2) : 233-268. doi: 10.3934/dcds.1999.5.233

[5]

Antonio Rieser. A topological approach to spectral clustering. Foundations of Data Science, 2021  doi: 10.3934/fods.2021005

[6]

Nhu N. Nguyen, George Yin. Stochastic partial differential equation models for spatially dependent predator-prey equations. Discrete & Continuous Dynamical Systems - B, 2020, 25 (1) : 117-139. doi: 10.3934/dcdsb.2019175

[7]

Bin Pei, Yong Xu, Yuzhen Bai. Convergence of p-th mean in an averaging principle for stochastic partial differential equations driven by fractional Brownian motion. Discrete & Continuous Dynamical Systems - B, 2020, 25 (3) : 1141-1158. doi: 10.3934/dcdsb.2019213

[8]

Shanjian Tang, Fu Zhang. Path-dependent optimal stochastic control and viscosity solution of associated Bellman equations. Discrete & Continuous Dynamical Systems - A, 2015, 35 (11) : 5521-5553. doi: 10.3934/dcds.2015.35.5521

[9]

Xiaohu Wang, Dingshi Li, Jun Shen. Wong-Zakai approximations and attractors for stochastic wave equations driven by additive noise. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2829-2855. doi: 10.3934/dcdsb.2020207

[10]

Lakmi Niwanthi Wadippuli, Ivan Gudoshnikov, Oleg Makarenkov. Global asymptotic stability of nonconvex sweeping processes. Discrete & Continuous Dynamical Systems - B, 2020, 25 (3) : 1129-1139. doi: 10.3934/dcdsb.2019212

[11]

Gelasio Salaza, Edgardo Ugalde, Jesús Urías. Master--slave synchronization of affine cellular automaton pairs. Discrete & Continuous Dynamical Systems - A, 2005, 13 (2) : 491-502. doi: 10.3934/dcds.2005.13.491

[12]

Huy Dinh, Harbir Antil, Yanlai Chen, Elena Cherkaev, Akil Narayan. Model reduction for fractional elliptic problems using Kato's formula. Mathematical Control & Related Fields, 2021  doi: 10.3934/mcrf.2021004

[13]

Guillaume Bal, Wenjia Jing. Homogenization and corrector theory for linear transport in random media. Discrete & Continuous Dynamical Systems - A, 2010, 28 (4) : 1311-1343. doi: 10.3934/dcds.2010.28.1311

[14]

Felix Finster, Jürg Fröhlich, Marco Oppio, Claudio F. Paganini. Causal fermion systems and the ETH approach to quantum theory. Discrete & Continuous Dynamical Systems - S, 2021, 14 (5) : 1717-1746. doi: 10.3934/dcdss.2020451

[15]

W. Cary Huffman. On the theory of $\mathbb{F}_q$-linear $\mathbb{F}_{q^t}$-codes. Advances in Mathematics of Communications, 2013, 7 (3) : 349-378. doi: 10.3934/amc.2013.7.349

[16]

Marian Gidea, Rafael de la Llave, Tere M. Seara. A general mechanism of instability in Hamiltonian systems: Skipping along a normally hyperbolic invariant manifold. Discrete & Continuous Dynamical Systems - A, 2020, 40 (12) : 6795-6813. doi: 10.3934/dcds.2020166

[17]

Peter Benner, Jens Saak, M. Monir Uddin. Balancing based model reduction for structured index-2 unstable descriptor systems with application to flow control. Numerical Algebra, Control & Optimization, 2016, 6 (1) : 1-20. doi: 10.3934/naco.2016.6.1

[18]

Meiqiao Ai, Zhimin Zhang, Wenguang Yu. First passage problems of refracted jump diffusion processes and their applications in valuing equity-linked death benefits. Journal of Industrial & Management Optimization, 2021  doi: 10.3934/jimo.2021039

[19]

Charles Fulton, David Pearson, Steven Pruess. Characterization of the spectral density function for a one-sided tridiagonal Jacobi matrix operator. Conference Publications, 2013, 2013 (special) : 247-257. doi: 10.3934/proc.2013.2013.247

[20]

Hong Seng Sim, Wah June Leong, Chuei Yee Chen, Siti Nur Iqmal Ibrahim. Multi-step spectral gradient methods with modified weak secant relation for large scale unconstrained optimization. Numerical Algebra, Control & Optimization, 2018, 8 (3) : 377-387. doi: 10.3934/naco.2018024

2019 Impact Factor: 1.27

Metrics

  • PDF downloads (67)
  • HTML views (0)
  • Cited by (4)

Other articles
by authors

[Back to Top]