-
Previous Article
On the local behavior of non-negative solutions to a logarithmically singular equation
- DCDS-B Home
- This Issue
-
Next Article
Equity valuation under stock dilution and buy-back
Optimal treated mosquito bed nets and insecticides for eradication of malaria in Missira
1. | Department of Mathematics and Computer Science, Grambling State University, Grambling, LA 71245, United States |
2. | Department of Mathematics, Howard University, Washington, DC 20059 |
References:
[1] |
A. D. Allen and M. Cisse, Determination of the frequency and correlation between glucose 6-phosphate dehydrogenase deficiency and sickle cell anemia (HbS) in a west African village (Mali), a malaria endemic region, Technical Report, Department of Biology (Howard Hughes Program), Howard University, 2010. |
[2] |
N. T. J. Bailey, "The Mathematical Theory of Epidemics," Hafner Publishing Co., New York, 1957. |
[3] |
A. Bekessey, L. Molineaux and J. Storey, Estimation of incidence and recovery rates of Plasmodium falciparum parasitaemia from longitudinal data, Bull. World Health Organ, 54 (1976), 685-693. |
[4] |
P. Carnevale, J. Mouchet, M. Coosemans, J. Julvez, S. Manguin, R. D. Lenoble and S. Sircoulou, "Biodiversit du Paludisme dans le Monde," John Libbey Eurotext, Paris, 2004. |
[5] |
D. Coulibaly, D. Diallo, M. Thera, A. Dicko, A. Guindo, A. Kone, Y. Cissoko, S. Coulibaly, A. Djimde, K. Lyke, O. Doumbo and C. Plowe, Impact of preseason treatment on incidence of falciparum malaria and parasite density at a site for testing malaria vaccines in Bandiagara, Mali, Am. J. Trop. Med. Hyg., 67 (2002), 604-610. |
[6] |
R. Carter, K. N. Mendis and D. Roberts, Spatial targeting of interventions against malaria, Bulletin of the World Health Organization, 78 (2000), 1401-1411. |
[7] |
Centers for Disease Control and Prevention, Malaria., Availabe from: \url{http://www.cdc.gov/malaria}., ().
|
[8] |
B. Dembele, A. Friedman and A.-A. Yakubu, Malaria model with periodic mosquito birth and death rates, J. Biol. Dyn., 3 (2009), 430-445. |
[9] |
B. Dembele, A. Friedman and A.-A. Yakubu, Mathematical model for optimal use of sulfadoxine-pyrimethamine as a temporary malaria vaccine, Bulletin of Mathematical Biology, 72 (2010), 914-930.
doi: 10.1007/s11538-009-9476-9. |
[10] |
K. Dietz, Mathematical models for malaria in different ecological, zones, Presented to the 7th International Biometric Conference, Hannover, August 1970, 1621. |
[11] |
K. Dietz, Mathematical models for transmission and control of malaria, in "Principles and Practice of Malariology" (eds. W. H. Wernsdorfer and I. McGregor), Churchill Livingstone, London, (1988), 1091-1113. |
[12] |
A. N. Gideon, and W. S. Shu, A Mathematical Model for Endemic Malaria with Variable Human and Mosquito populations, United Nations Educational Scientific and Cultural Organization and International Atomic Energy Agency, IC, (1999), 127. Available from: http://www.ictp.trieste.it/puboff. |
[13] |
N. J. Govella, F. O. Okumu and F. Killeen. Gerry, Insecticide-treated nets can reduce malaria transmission by mosquitoes which feed outdoors, Am. J. Trop. Med. Hyg., 82 (2010), 415-419.
doi: 10.4269/ajtmh.2010.09-0579. |
[14] |
N. C. Grassly and C. Fraser, Seasonal infectious disease epidemiology, Proc. R. Soc. B, 273 (2006), 2541-2550.
doi: 10.1098/rspb.2006.3604. |
[15] |
W. O. Kermack and A. G. McKendrick, Contributions to the mathematical theory of epidemics , Proc. R. Soc. A, 115 (1927), 700-721.
doi: 10.1098/rspa.1927.0118. |
[16] |
G. F. Killeen, A. Seyoum and B. G. J. Knols, Rationalizing historical successes of malaria control in Africa in terms of mosquito resource availability management, Am. J. Trop. Med. Hyg., 71 (2004), 87-93. |
[17] |
A. J. Lokta, Contributions to the analysis of malaria epidemiology, Am. J. Hyg., 3 (1923), 11-21. |
[18] |
G. Macdonald, The analysis of infection rates in diseases in which supperinfection occurs, Trop. Dis. Bull., 47 (1950), 907-915. |
[19] |
E. Martini, "Berechnungen und Beobachtungen zur Epidemiologie und Bekam pfung der Malaria," Gente, Hamburg, 1921. |
[20] |
F. E. McKenzie and H. W. Bossert, An integrated model of Plasmodium falciparum dynamics, J. Theor. Biol., 232 (2005), 411-426.
doi: 10.1016/j.jtbi.2004.08.021. |
[21] |
A. L. Menach, E. F. McKenzie, A. Flahault and D. L. Smith, The unexpected importance of mosquito oviposition behaviour for malaria: Non-productive larval habitats can be sources for malaria transmission, Malaria Journal, (2005), 4-23. |
[22] |
National Institute of Allergy and Infectious Diseases, Malaria, Publication No. 02-7139, 2002. |
[23] |
T. J. Norman and M. A. Baley, "The Biomathematics of Malaria," Oxford University Press, London, 1982. |
[24] |
R. Ross, "The Prevention of Malaria," 2nd edition, With Addendum on the Theory of Happenings, Murray, London, 1911. |
[25] |
N. Sagoba, S. Doumbia, P. Vounatsou, I. Baber, M. Keita, M. Maiga, S. Toure, G. Dolo, T. Smith and J. M. C. Ribeiro, Monitoring of larval habitats and mosquito densities in the Sudan savanna of Mali: Implications of malaria vector control, Am. J. Trop. Med. Hyg., 77 (2007), 82-88. |
show all references
References:
[1] |
A. D. Allen and M. Cisse, Determination of the frequency and correlation between glucose 6-phosphate dehydrogenase deficiency and sickle cell anemia (HbS) in a west African village (Mali), a malaria endemic region, Technical Report, Department of Biology (Howard Hughes Program), Howard University, 2010. |
[2] |
N. T. J. Bailey, "The Mathematical Theory of Epidemics," Hafner Publishing Co., New York, 1957. |
[3] |
A. Bekessey, L. Molineaux and J. Storey, Estimation of incidence and recovery rates of Plasmodium falciparum parasitaemia from longitudinal data, Bull. World Health Organ, 54 (1976), 685-693. |
[4] |
P. Carnevale, J. Mouchet, M. Coosemans, J. Julvez, S. Manguin, R. D. Lenoble and S. Sircoulou, "Biodiversit du Paludisme dans le Monde," John Libbey Eurotext, Paris, 2004. |
[5] |
D. Coulibaly, D. Diallo, M. Thera, A. Dicko, A. Guindo, A. Kone, Y. Cissoko, S. Coulibaly, A. Djimde, K. Lyke, O. Doumbo and C. Plowe, Impact of preseason treatment on incidence of falciparum malaria and parasite density at a site for testing malaria vaccines in Bandiagara, Mali, Am. J. Trop. Med. Hyg., 67 (2002), 604-610. |
[6] |
R. Carter, K. N. Mendis and D. Roberts, Spatial targeting of interventions against malaria, Bulletin of the World Health Organization, 78 (2000), 1401-1411. |
[7] |
Centers for Disease Control and Prevention, Malaria., Availabe from: \url{http://www.cdc.gov/malaria}., ().
|
[8] |
B. Dembele, A. Friedman and A.-A. Yakubu, Malaria model with periodic mosquito birth and death rates, J. Biol. Dyn., 3 (2009), 430-445. |
[9] |
B. Dembele, A. Friedman and A.-A. Yakubu, Mathematical model for optimal use of sulfadoxine-pyrimethamine as a temporary malaria vaccine, Bulletin of Mathematical Biology, 72 (2010), 914-930.
doi: 10.1007/s11538-009-9476-9. |
[10] |
K. Dietz, Mathematical models for malaria in different ecological, zones, Presented to the 7th International Biometric Conference, Hannover, August 1970, 1621. |
[11] |
K. Dietz, Mathematical models for transmission and control of malaria, in "Principles and Practice of Malariology" (eds. W. H. Wernsdorfer and I. McGregor), Churchill Livingstone, London, (1988), 1091-1113. |
[12] |
A. N. Gideon, and W. S. Shu, A Mathematical Model for Endemic Malaria with Variable Human and Mosquito populations, United Nations Educational Scientific and Cultural Organization and International Atomic Energy Agency, IC, (1999), 127. Available from: http://www.ictp.trieste.it/puboff. |
[13] |
N. J. Govella, F. O. Okumu and F. Killeen. Gerry, Insecticide-treated nets can reduce malaria transmission by mosquitoes which feed outdoors, Am. J. Trop. Med. Hyg., 82 (2010), 415-419.
doi: 10.4269/ajtmh.2010.09-0579. |
[14] |
N. C. Grassly and C. Fraser, Seasonal infectious disease epidemiology, Proc. R. Soc. B, 273 (2006), 2541-2550.
doi: 10.1098/rspb.2006.3604. |
[15] |
W. O. Kermack and A. G. McKendrick, Contributions to the mathematical theory of epidemics , Proc. R. Soc. A, 115 (1927), 700-721.
doi: 10.1098/rspa.1927.0118. |
[16] |
G. F. Killeen, A. Seyoum and B. G. J. Knols, Rationalizing historical successes of malaria control in Africa in terms of mosquito resource availability management, Am. J. Trop. Med. Hyg., 71 (2004), 87-93. |
[17] |
A. J. Lokta, Contributions to the analysis of malaria epidemiology, Am. J. Hyg., 3 (1923), 11-21. |
[18] |
G. Macdonald, The analysis of infection rates in diseases in which supperinfection occurs, Trop. Dis. Bull., 47 (1950), 907-915. |
[19] |
E. Martini, "Berechnungen und Beobachtungen zur Epidemiologie und Bekam pfung der Malaria," Gente, Hamburg, 1921. |
[20] |
F. E. McKenzie and H. W. Bossert, An integrated model of Plasmodium falciparum dynamics, J. Theor. Biol., 232 (2005), 411-426.
doi: 10.1016/j.jtbi.2004.08.021. |
[21] |
A. L. Menach, E. F. McKenzie, A. Flahault and D. L. Smith, The unexpected importance of mosquito oviposition behaviour for malaria: Non-productive larval habitats can be sources for malaria transmission, Malaria Journal, (2005), 4-23. |
[22] |
National Institute of Allergy and Infectious Diseases, Malaria, Publication No. 02-7139, 2002. |
[23] |
T. J. Norman and M. A. Baley, "The Biomathematics of Malaria," Oxford University Press, London, 1982. |
[24] |
R. Ross, "The Prevention of Malaria," 2nd edition, With Addendum on the Theory of Happenings, Murray, London, 1911. |
[25] |
N. Sagoba, S. Doumbia, P. Vounatsou, I. Baber, M. Keita, M. Maiga, S. Toure, G. Dolo, T. Smith and J. M. C. Ribeiro, Monitoring of larval habitats and mosquito densities in the Sudan savanna of Mali: Implications of malaria vector control, Am. J. Trop. Med. Hyg., 77 (2007), 82-88. |
[1] |
Raphael Stuhlmeier. Internal Gerstner waves on a sloping bed. Discrete and Continuous Dynamical Systems, 2014, 34 (8) : 3183-3192. doi: 10.3934/dcds.2014.34.3183 |
[2] |
Carlos Gutierrez, Víctor Guíñez, Alvaro Castañeda. Quartic differential forms and transversal nets with singularities. Discrete and Continuous Dynamical Systems, 2010, 26 (1) : 225-249. doi: 10.3934/dcds.2010.26.225 |
[3] |
Hui Wan, Jing-An Cui. A model for the transmission of malaria. Discrete and Continuous Dynamical Systems - B, 2009, 11 (2) : 479-496. doi: 10.3934/dcdsb.2009.11.479 |
[4] |
Arminda Moreno-Díaz, Gabriel de Blasio, Moreno-Díaz Jr.. Distributed, layered and reliable computing nets to represent neuronal receptive fields. Mathematical Biosciences & Engineering, 2014, 11 (2) : 343-361. doi: 10.3934/mbe.2014.11.343 |
[5] |
Jia Li. A malaria model with partial immunity in humans. Mathematical Biosciences & Engineering, 2008, 5 (4) : 789-801. doi: 10.3934/mbe.2008.5.789 |
[6] |
Ali Gharouni, Lin Wang. Modeling the spread of bed bug infestation and optimal resource allocation for disinfestation. Mathematical Biosciences & Engineering, 2016, 13 (5) : 969-980. doi: 10.3934/mbe.2016025 |
[7] |
Yancong Xu, Lijun Wei, Xiaoyu Jiang, Zirui Zhu. Complex dynamics of a SIRS epidemic model with the influence of hospital bed number. Discrete and Continuous Dynamical Systems - B, 2021, 26 (12) : 6229-6252. doi: 10.3934/dcdsb.2021016 |
[8] |
Expeditho Mtisi, Herieth Rwezaura, Jean Michel Tchuenche. A mathematical analysis of malaria and tuberculosis co-dynamics. Discrete and Continuous Dynamical Systems - B, 2009, 12 (4) : 827-864. doi: 10.3934/dcdsb.2009.12.827 |
[9] |
Hongyan Yin, Cuihong Yang, Xin'an Zhang, Jia Li. The impact of releasing sterile mosquitoes on malaria transmission. Discrete and Continuous Dynamical Systems - B, 2018, 23 (9) : 3837-3853. doi: 10.3934/dcdsb.2018113 |
[10] |
Bassidy Dembele, Abdul-Aziz Yakubu. Controlling imported malaria cases in the United States of America. Mathematical Biosciences & Engineering, 2017, 14 (1) : 95-109. doi: 10.3934/mbe.2017007 |
[11] |
G.A. Ngwa. Modelling the dynamics of endemic malaria in growing populations. Discrete and Continuous Dynamical Systems - B, 2004, 4 (4) : 1173-1202. doi: 10.3934/dcdsb.2004.4.1173 |
[12] |
Yanyu Xiao, Xingfu Zou. On latencies in malaria infections and their impact on the disease dynamics. Mathematical Biosciences & Engineering, 2013, 10 (2) : 463-481. doi: 10.3934/mbe.2013.10.463 |
[13] |
Jia Li. Malaria model with stage-structured mosquitoes. Mathematical Biosciences & Engineering, 2011, 8 (3) : 753-768. doi: 10.3934/mbe.2011.8.753 |
[14] |
Jinliang Wang, Jingmei Pang, Toshikazu Kuniya. A note on global stability for malaria infections model with latencies. Mathematical Biosciences & Engineering, 2014, 11 (4) : 995-1001. doi: 10.3934/mbe.2014.11.995 |
[15] |
Changguang Dong. Separated nets arising from certain higher rank $\mathbb{R}^k$ actions on homogeneous spaces. Discrete and Continuous Dynamical Systems, 2017, 37 (8) : 4231-4238. doi: 10.3934/dcds.2017180 |
[16] |
Derdei Bichara, Nathalie Cozic, Abderrahman Iggidr. On the estimation of sequestered infected erythrocytes in Plasmodium falciparum malaria patients. Mathematical Biosciences & Engineering, 2014, 11 (4) : 741-759. doi: 10.3934/mbe.2014.11.741 |
[17] |
Zindoga Mukandavire, Abba B. Gumel, Winston Garira, Jean Michel Tchuenche. Mathematical analysis of a model for HIV-malaria co-infection. Mathematical Biosciences & Engineering, 2009, 6 (2) : 333-362. doi: 10.3934/mbe.2009.6.333 |
[18] |
Lizhong Qiang, Bin-Guo Wang. An almost periodic malaria transmission model with time-delayed input of vector. Discrete and Continuous Dynamical Systems - B, 2017, 22 (4) : 1525-1546. doi: 10.3934/dcdsb.2017073 |
[19] |
Eunha Shim, Zhilan Feng, Carlos Castillo-Chavez. Differential impact of sickle cell trait on symptomatic and asymptomatic malaria. Mathematical Biosciences & Engineering, 2012, 9 (4) : 877-898. doi: 10.3934/mbe.2012.9.877 |
[20] |
Kazeem Oare Okosun, Robert Smith?. Optimal control analysis of malaria-schistosomiasis co-infection dynamics. Mathematical Biosciences & Engineering, 2017, 14 (2) : 377-405. doi: 10.3934/mbe.2017024 |
2020 Impact Factor: 1.327
Tools
Metrics
Other articles
by authors
[Back to Top]