September  2012, 17(6): 2171-2184. doi: 10.3934/dcdsb.2012.17.2171

Dynamics of a two-receptor binding model: How affinities and capacities translate into long and short time behaviour and physiological corollaries

1. 

Mathematical Institute, Leiden University, PB 9512, 2300 RA Leiden, Netherlands

2. 

Advanced Modeling & Simulation; Clinical Pharmacology, Janssen Research & Development, a division of Janssen Pharmaceutica N.V., Turnhoutseweg 30, 2340 Beerse, Belgium, Belgium

Received  July 2011 Revised  February 2012 Published  May 2012

In this paper we present a mathematical analysis of a model involving target-mediated drug disposition involving two targets, developed to fit a series of data sets. The two targets are receptors with very different characteristics: one has high affinity to the drug, a small capacity and a short half-life, whilst the other receptor has low affinity to the drug, high capacity and its half-life is large. The analysis of this model yields a qualitative and quantitative understanding of the dynamics of this two-receptor model and in particular identifies different time scales over which the amounts of free drug and drug-receptor complexes vary. Thus it yields analytical tools to make long-term predictions on the basis of medium term data sets.
Citation: Lambertus A. Peletier, Willem de Winter, An Vermeulen. Dynamics of a two-receptor binding model: How affinities and capacities translate into long and short time behaviour and physiological corollaries. Discrete and Continuous Dynamical Systems - B, 2012, 17 (6) : 2171-2184. doi: 10.3934/dcdsb.2012.17.2171
References:
[1]

L. Gibiansky, E. Gibiansky, T. Kakkar and P. Ma, Approximations of the target-mediated drug disposition model and identifying of model parameters, J. Pharmacokinetics Phamacodynamics, 35 (2008), 573-591. doi: 10.1007/s10928-008-9102-8.

[2]

L. Gibiansky and E. Gibiansky, Target-mediated drug disposition model for drugs that bind to more than one target, J. Pharmacokinetics Phamacodynamics, 37 (2010), 323-346. doi: 10.1007/s10928-010-9163-3.

[3]

D. Mager and W. J. Jusko, General pharmacokinetic model for drugs exhibiting target-mediated drug disposition, J. Pharmacokinetics and Phamacodynamics, 28 (2001), 507-532. doi: 10.1023/A:1014414520282.

[4]

D. Mager and W. Krzyzanski, Quasi-equilibrium pharmacokinetic model for drugs exhibiting target-mediated drug disposition, Pharm. Research, 22 (2005), 1589-1596. doi: 10.1007/s11095-005-6650-0.

[5]

L. Michaelis and M. L. Menten, Die Kinetik der Invertinwirkung, Biochem. Z., 49 (1913), 333-369.

[6]

L. A. Peletier and J. Gabrielsson, Dynamics of target-mediated drug disposition, European Journal of Pharmaceutical Sciences, 38 (2009), 445-464. doi: 10.1016/j.ejps.2009.09.007.

[7]

L. A. Peletier, N. Benson and P. H. van der Graaf, Impact of plasma-protein binding on receptor occupancy: An analytical description, J. Theor. Biology, 256 (2009), 253-262. doi: 10.1016/j.jtbi.2008.09.014.

[8]

E. Snoeck, Ph. Jacqmin, A. van Peer and M. Danhof, A combined specific target site binding and pharmacokinetic model to explore the non-linear disposition of draflazine, J. Pharmacokinetics and Biopharmaceutics, 27 (1999), 257-281. doi: 10.1023/A:1020943029130.

[9]

L. A. Segel, On the validity of the steady state assumption of enzyme kinetics, Bull. Math. Biol., 50 (1988), 579-593. doi: 10.1016/S0092-8240(88)80057-0.

[10]

L. A. Segel and M. Slemrod, The quasi-steady state assumption: A case study in perturbation, SIAM Review, 31 (1989), 446-477. doi: 10.1137/1031091.

[11]

Y. Sugiyama and M. Hanano, Receptor-mediated transport of peptide hormones and its importance in the overall hormone disposition in the body, Pharm. Research 6 (1989), 192-202.

show all references

References:
[1]

L. Gibiansky, E. Gibiansky, T. Kakkar and P. Ma, Approximations of the target-mediated drug disposition model and identifying of model parameters, J. Pharmacokinetics Phamacodynamics, 35 (2008), 573-591. doi: 10.1007/s10928-008-9102-8.

[2]

L. Gibiansky and E. Gibiansky, Target-mediated drug disposition model for drugs that bind to more than one target, J. Pharmacokinetics Phamacodynamics, 37 (2010), 323-346. doi: 10.1007/s10928-010-9163-3.

[3]

D. Mager and W. J. Jusko, General pharmacokinetic model for drugs exhibiting target-mediated drug disposition, J. Pharmacokinetics and Phamacodynamics, 28 (2001), 507-532. doi: 10.1023/A:1014414520282.

[4]

D. Mager and W. Krzyzanski, Quasi-equilibrium pharmacokinetic model for drugs exhibiting target-mediated drug disposition, Pharm. Research, 22 (2005), 1589-1596. doi: 10.1007/s11095-005-6650-0.

[5]

L. Michaelis and M. L. Menten, Die Kinetik der Invertinwirkung, Biochem. Z., 49 (1913), 333-369.

[6]

L. A. Peletier and J. Gabrielsson, Dynamics of target-mediated drug disposition, European Journal of Pharmaceutical Sciences, 38 (2009), 445-464. doi: 10.1016/j.ejps.2009.09.007.

[7]

L. A. Peletier, N. Benson and P. H. van der Graaf, Impact of plasma-protein binding on receptor occupancy: An analytical description, J. Theor. Biology, 256 (2009), 253-262. doi: 10.1016/j.jtbi.2008.09.014.

[8]

E. Snoeck, Ph. Jacqmin, A. van Peer and M. Danhof, A combined specific target site binding and pharmacokinetic model to explore the non-linear disposition of draflazine, J. Pharmacokinetics and Biopharmaceutics, 27 (1999), 257-281. doi: 10.1023/A:1020943029130.

[9]

L. A. Segel, On the validity of the steady state assumption of enzyme kinetics, Bull. Math. Biol., 50 (1988), 579-593. doi: 10.1016/S0092-8240(88)80057-0.

[10]

L. A. Segel and M. Slemrod, The quasi-steady state assumption: A case study in perturbation, SIAM Review, 31 (1989), 446-477. doi: 10.1137/1031091.

[11]

Y. Sugiyama and M. Hanano, Receptor-mediated transport of peptide hormones and its importance in the overall hormone disposition in the body, Pharm. Research 6 (1989), 192-202.

[1]

Lambertus A. Peletier. Modeling drug-protein dynamics. Discrete and Continuous Dynamical Systems - S, 2012, 5 (1) : 191-207. doi: 10.3934/dcdss.2012.5.191

[2]

Fabio Camilli, Annalisa Cesaroni. A note on singular perturbation problems via Aubry-Mather theory. Discrete and Continuous Dynamical Systems, 2007, 17 (4) : 807-819. doi: 10.3934/dcds.2007.17.807

[3]

Manfred Deistler. Singular arma systems: A structure theory. Numerical Algebra, Control and Optimization, 2019, 9 (3) : 383-391. doi: 10.3934/naco.2019025

[4]

Chris Guiver. The generalised singular perturbation approximation for bounded real and positive real control systems. Mathematical Control and Related Fields, 2019, 9 (2) : 313-350. doi: 10.3934/mcrf.2019016

[5]

Nathan Glatt-Holtz, Mohammed Ziane. Singular perturbation systems with stochastic forcing and the renormalization group method. Discrete and Continuous Dynamical Systems, 2010, 26 (4) : 1241-1268. doi: 10.3934/dcds.2010.26.1241

[6]

Stéphane Chrétien, Sébastien Darses, Christophe Guyeux, Paul Clarkson. On the pinning controllability of complex networks using perturbation theory of extreme singular values. application to synchronisation in power grids. Numerical Algebra, Control and Optimization, 2017, 7 (3) : 289-299. doi: 10.3934/naco.2017019

[7]

D. Warren, K Najarian. Learning theory applied to Sigmoid network classification of protein biological function using primary protein structure. Conference Publications, 2003, 2003 (Special) : 898-904. doi: 10.3934/proc.2003.2003.898

[8]

Eduard Marušić-Paloka, Igor Pažanin. Homogenization and singular perturbation in porous media. Communications on Pure and Applied Analysis, 2021, 20 (2) : 533-545. doi: 10.3934/cpaa.2020279

[9]

John Boyd. Strongly nonlinear perturbation theory for solitary waves and bions. Evolution Equations and Control Theory, 2019, 8 (1) : 1-29. doi: 10.3934/eect.2019001

[10]

Ilona Gucwa, Peter Szmolyan. Geometric singular perturbation analysis of an autocatalator model. Discrete and Continuous Dynamical Systems - S, 2009, 2 (4) : 783-806. doi: 10.3934/dcdss.2009.2.783

[11]

Florian Dorsch, Hermann Schulz-Baldes. Random Möbius dynamics on the unit disc and perturbation theory for Lyapunov exponents. Discrete and Continuous Dynamical Systems - B, 2022, 27 (2) : 945-976. doi: 10.3934/dcdsb.2021076

[12]

Chaoqun Huang, Nung Kwan Yip. Singular perturbation and bifurcation of diffuse transition layers in inhomogeneous media, part II. Networks and Heterogeneous Media, 2015, 10 (4) : 897-948. doi: 10.3934/nhm.2015.10.897

[13]

Feifei Cheng, Ji Li. Geometric singular perturbation analysis of Degasperis-Procesi equation with distributed delay. Discrete and Continuous Dynamical Systems, 2021, 41 (2) : 967-985. doi: 10.3934/dcds.2020305

[14]

Wei Wang, Yan Lv. Limit behavior of nonlinear stochastic wave equations with singular perturbation. Discrete and Continuous Dynamical Systems - B, 2010, 13 (1) : 175-193. doi: 10.3934/dcdsb.2010.13.175

[15]

Chaoqun Huang, Nung Kwan Yip. Singular perturbation and bifurcation of diffuse transition layers in inhomogeneous media, part I. Networks and Heterogeneous Media, 2013, 8 (4) : 1009-1034. doi: 10.3934/nhm.2013.8.1009

[16]

Yangyang Shi, Hongjun Gao. Homogenization for stochastic reaction-diffusion equations with singular perturbation term. Discrete and Continuous Dynamical Systems - B, 2022, 27 (4) : 2401-2426. doi: 10.3934/dcdsb.2021137

[17]

Krešimir Burazin, Marko Vrdoljak. Homogenisation theory for Friedrichs systems. Communications on Pure and Applied Analysis, 2014, 13 (3) : 1017-1044. doi: 10.3934/cpaa.2014.13.1017

[18]

Roberta Fabbri, Carmen Núñez, Ana M. Sanz. A perturbation theorem for linear Hamiltonian systems with bounded orbits. Discrete and Continuous Dynamical Systems, 2005, 13 (3) : 623-635. doi: 10.3934/dcds.2005.13.623

[19]

Leonor Cruzeiro. The VES hypothesis and protein misfolding. Discrete and Continuous Dynamical Systems - S, 2011, 4 (5) : 1033-1046. doi: 10.3934/dcdss.2011.4.1033

[20]

Manuel Delgado, Cristian Morales-Rodrigo, Antonio Suárez. Anti-angiogenic therapy based on the binding to receptors. Discrete and Continuous Dynamical Systems, 2012, 32 (11) : 3871-3894. doi: 10.3934/dcds.2012.32.3871

2020 Impact Factor: 1.327

Metrics

  • PDF downloads (39)
  • HTML views (0)
  • Cited by (3)

[Back to Top]