-
Previous Article
Lyapunov-Schmidt reduction for optimal control problems
- DCDS-B Home
- This Issue
-
Next Article
Dynamics of a two-receptor binding model: How affinities and capacities translate into long and short time behaviour and physiological corollaries
Dynamics of bone cell signaling and PTH treatments of osteoporosis
1. | School of Mathematical Sciences, Rochester Institute of Technology, Rochester, NY 14623, United States, United States |
2. | ESD - Modeling and Simulations, Merck and Co., West Point, PA 19486, United States |
3. | Applied Computer Science and Mathematics, Merck and Co., West Point, PA 19486, United States |
References:
[1] |
E. Agyingi, D. S. Ross and K. Bathena, A model of the transmission dynamics of Leismaniasis, J. Bio. Systems, 19 (2011), 237-250.
doi: 10.1142/S0218339011003841. |
[2] |
B. P. Ayati, C. M. Edwards, G. F. Webb and J. P. Wikswo, Mathematical model of bone remodeling dynamics for normal bone cell populations and myeloma bone disease, Biology Direct, 5 (2010), 28. |
[3] |
C. Battista, "Mathematical Models of Bone Remodeling at the Cellular Level," M.S. Thesis, Rochester Institute of Technology, 2011. |
[4] |
T. Bellido, A. Ali, L. I. Plotkin, Q. Fu, I. Gubrij, P. K. Roberson, R. S. Weinstein, C. A. O'Brien, S. C. Manolagas and R. I. Jilka, Proteasomal degradation of Runx2 shortens parathyroid hormone-induced anti-apoptotic signaling in osteoblasts; A putatitve explanation for why intermittent administration is needed for bone anabolism, J. Bio. Chem., 278, (2003), 50259-50272. |
[5] |
F. Brohner and W. E. Stein, Calcium homeostasis, an old problem revisited, J. Nutr., 125 (1995), 1987S-1995S. |
[6] |
F. Cosman, N. E. Lane, M. A. Bolognese, J. R. Zanchetta, P. A. Garcia-Hernandez, K. Sees, J. A. Matriano, K. Gaumer and P. E. Daddona, Effect of transdermal teriparatide administration on bone mineral density in postmenopausal women, J. Clin. Endocrinol. Metab., 95 (2010), 151-158.
doi: 10.1210/jc.2009-0358. |
[7] |
D. W. Dempster, F. Cosman, M. Parisien and V. Shen, Anabolic action of parathyroid hormone on bone, Endocr. Rev., 14 (1993), 690-709. |
[8] |
P. Ducy, T. Schinke and G. Karsenty, The osteoblast: A sophisticated fibroblast under central surveillance, Science, 289 (2000), 1501-1504.
doi: 10.1126/science.289.5484.1501. |
[9] |
J. S. Finkelstein, Jason J. Wyland, B. Z. Leder, S. A. M. Burnett-Bowie, H. Lee, H. Jüppner and R. M. Neer, Effects of teriparatide retreatment in osteoporotic men and women, J. Clin. Endocrinol. Metab., 94 (2009), 2495-2501.
doi: 10.1210/jc.2009-0154. |
[10] |
C. Y. Guo, W. E. G. Thomas, A. W. al-Dehaimi, A. M. A. Assiri and R. Eastell, Longitudinal changes in bone mineral density and bone turnover in postmenopausal women with primary hyperparathyroidism, J. Clin. Endocrinol. Metab., 81 (1996), 3487-3491.
doi: 10.1210/jc.81.10.3487. |
[11] |
R. L. Jilka, R. S. Weinstein, T. Bellido, P. Roberson, A. M. Parfitt and S. C. Manolagas, Increased bone formation by prevention of osteoblast apoptosis with parathyroid hormone, J. Clin. Invest., 104 (1999), 439-446.
doi: 10.1172/JCI6610. |
[12] |
S. V. Komarova, R. J. Smith, S. J. Dixon, S. M. Sims and L. M. Wahl, Mathematical model predicts a critical role for osteoclast autocrine regulation in the control of bone remodeling, Bone, 33 (2003), 206-215.
doi: 10.1016/S8756-3282(03)00157-1. |
[13] |
M. H. Kroll, Parathyroid hormone temporal effects on bone formation and resorption, Bull. Math. Biol., 62 (2000), 163-688.
doi: 10.1006/bulm.1999.0146. |
[14] |
V. Lemaire, F. L. Tobin, L. D. Greller, C. R. Cho and L. J. Suva, Modeling the interactions between osteoblast and osteoclast activities in bone remodeling, J. Theo. Bio., 229 (2004), 293-309.
doi: 10.1016/j.jtbi.2004.03.023. |
[15] |
S. C. Manolagas, Birth and death of bone cells: Basic regulatory mechanisms and implications for the pathogenesis and treatment of osteoporosis, Endocrine Reviews, 21 (2000), 115-137.
doi: 10.1210/er.21.2.115. |
[16] |
R. M. Neer, C. D. Arnaud, J. R. Zanchetta, R. Prince, G. A. Gaich, J. Y. Reginster, A. B. Hodsman, E. F. Eriksen, S. Ish-Shalom, H. K. Genant, O. Wang and B. H. Mitlak, Effect of parathyroid hormone (1-34) on fractures and bone mineral density in postmenopausal women with osteoporosis, N. Engl. J. Med., 344 (2001), 1434-1441.
doi: 10.1056/NEJM200105103441904. |
[17] |
R. O. C. Oreffoi, G. R. Mundyf, S. M. Seyedin and L. F. Bonewald, Activation of the bone-derived latent TGF-beta complex by isolated osteoclasts, Biochem. Biophys. Res. Comm., 158 (1989), 817-823.
doi: 10.1016/0006-291X(89)92795-2. |
[18] |
M. Peterson and M. Riggs, A physiologically based mathematical model of integrated calcium homeostasis and bone remodeling, Bone, 46 (2010), 49-63.
doi: 10.1016/j.bone.2009.08.053. |
[19] |
K. E. S. Poole and J. Reeve, Parathyroid hormone-a bone anabolic and catabolic agent, Current Opinion in Pharmacology, 5 (2005), 612-617. |
[20] |
J. F. Raposo, L. G. Sobrinho and H. G. Ferriera, A minimal mathematical model of calcium homeostasis, J. Clinical Endocrin. Metab., 87 (2002), 4330-4340.
doi: 10.1210/jc.2002-011870. |
[21] |
D. S. Ross, K. Mehta and A. Cabal, A mathematical model of bone biochemistry,, in preparation., ().
|
[22] |
E. Seeman and P. D. Delmas, Reconstructing the skeleton with intermittent parathyroid hormone, Trends Endocrinol. Metab., 12 (2001), 281-283.
doi: 10.1016/S1043-2760(01)00460-X. |
[23] |
R. P. Shrestha, C. V. Hollot, S. R. Chipkin, C. P. Schmitt and Y. Chait, A mathematical model of parathyroid hormone response to acute changes in plasma ionized calcium concentration in humans, Mathematical Biosciences, 226 (2010), 46-57.
doi: 10.1016/j.mbs.2010.04.001. |
[24] |
E. Slatopolsky, A. Brown and A. Dusso, Pathogenesis of secondary hyperparathyroidism, Kidney Int. Suppl., 73 (1999), S14-S19.
doi: 10.1046/j.1523-1755.1999.07304.x. |
[25] |
R. V. Talmage, G. E. Lester, P. F. Hirsch and J. Musculoske, Parathyroid hormone and plasma calcium control: An editorial, J. Musculoskel. Neuron. Interact., 1 (2000), 121-126. |
[26] |
S. L. Teitelbaum, Bone resorption by osteoclasts, Science, 289 (2000), 1501-1504.
doi: 10.1126/science.289.5484.1504. |
[27] |
H. Vaananen and T. Laitala-Leinonen, Osteoclast lineage and function, Arch. Biochem. Biophys., 473 (2008), 132-138.
doi: 10.1016/j.abb.2008.03.037. |
[28] |
L. Xing and B. F. Boyce, Regulation of apoptosis in osteoclasts and osteoblastic cells, Biochemical and Biophysical Research Communications, 328 (2005), 709-720.
doi: 10.1016/j.bbrc.2004.11.072. |
[29] |
M. Zumsande, D. Stiefs, S. Siegmund and T. Gross, General analysis of mathematical models for bone remodeling, Bone, 48 (2011), 910-917.
doi: 10.1016/j.bone.2010.12.010. |
show all references
References:
[1] |
E. Agyingi, D. S. Ross and K. Bathena, A model of the transmission dynamics of Leismaniasis, J. Bio. Systems, 19 (2011), 237-250.
doi: 10.1142/S0218339011003841. |
[2] |
B. P. Ayati, C. M. Edwards, G. F. Webb and J. P. Wikswo, Mathematical model of bone remodeling dynamics for normal bone cell populations and myeloma bone disease, Biology Direct, 5 (2010), 28. |
[3] |
C. Battista, "Mathematical Models of Bone Remodeling at the Cellular Level," M.S. Thesis, Rochester Institute of Technology, 2011. |
[4] |
T. Bellido, A. Ali, L. I. Plotkin, Q. Fu, I. Gubrij, P. K. Roberson, R. S. Weinstein, C. A. O'Brien, S. C. Manolagas and R. I. Jilka, Proteasomal degradation of Runx2 shortens parathyroid hormone-induced anti-apoptotic signaling in osteoblasts; A putatitve explanation for why intermittent administration is needed for bone anabolism, J. Bio. Chem., 278, (2003), 50259-50272. |
[5] |
F. Brohner and W. E. Stein, Calcium homeostasis, an old problem revisited, J. Nutr., 125 (1995), 1987S-1995S. |
[6] |
F. Cosman, N. E. Lane, M. A. Bolognese, J. R. Zanchetta, P. A. Garcia-Hernandez, K. Sees, J. A. Matriano, K. Gaumer and P. E. Daddona, Effect of transdermal teriparatide administration on bone mineral density in postmenopausal women, J. Clin. Endocrinol. Metab., 95 (2010), 151-158.
doi: 10.1210/jc.2009-0358. |
[7] |
D. W. Dempster, F. Cosman, M. Parisien and V. Shen, Anabolic action of parathyroid hormone on bone, Endocr. Rev., 14 (1993), 690-709. |
[8] |
P. Ducy, T. Schinke and G. Karsenty, The osteoblast: A sophisticated fibroblast under central surveillance, Science, 289 (2000), 1501-1504.
doi: 10.1126/science.289.5484.1501. |
[9] |
J. S. Finkelstein, Jason J. Wyland, B. Z. Leder, S. A. M. Burnett-Bowie, H. Lee, H. Jüppner and R. M. Neer, Effects of teriparatide retreatment in osteoporotic men and women, J. Clin. Endocrinol. Metab., 94 (2009), 2495-2501.
doi: 10.1210/jc.2009-0154. |
[10] |
C. Y. Guo, W. E. G. Thomas, A. W. al-Dehaimi, A. M. A. Assiri and R. Eastell, Longitudinal changes in bone mineral density and bone turnover in postmenopausal women with primary hyperparathyroidism, J. Clin. Endocrinol. Metab., 81 (1996), 3487-3491.
doi: 10.1210/jc.81.10.3487. |
[11] |
R. L. Jilka, R. S. Weinstein, T. Bellido, P. Roberson, A. M. Parfitt and S. C. Manolagas, Increased bone formation by prevention of osteoblast apoptosis with parathyroid hormone, J. Clin. Invest., 104 (1999), 439-446.
doi: 10.1172/JCI6610. |
[12] |
S. V. Komarova, R. J. Smith, S. J. Dixon, S. M. Sims and L. M. Wahl, Mathematical model predicts a critical role for osteoclast autocrine regulation in the control of bone remodeling, Bone, 33 (2003), 206-215.
doi: 10.1016/S8756-3282(03)00157-1. |
[13] |
M. H. Kroll, Parathyroid hormone temporal effects on bone formation and resorption, Bull. Math. Biol., 62 (2000), 163-688.
doi: 10.1006/bulm.1999.0146. |
[14] |
V. Lemaire, F. L. Tobin, L. D. Greller, C. R. Cho and L. J. Suva, Modeling the interactions between osteoblast and osteoclast activities in bone remodeling, J. Theo. Bio., 229 (2004), 293-309.
doi: 10.1016/j.jtbi.2004.03.023. |
[15] |
S. C. Manolagas, Birth and death of bone cells: Basic regulatory mechanisms and implications for the pathogenesis and treatment of osteoporosis, Endocrine Reviews, 21 (2000), 115-137.
doi: 10.1210/er.21.2.115. |
[16] |
R. M. Neer, C. D. Arnaud, J. R. Zanchetta, R. Prince, G. A. Gaich, J. Y. Reginster, A. B. Hodsman, E. F. Eriksen, S. Ish-Shalom, H. K. Genant, O. Wang and B. H. Mitlak, Effect of parathyroid hormone (1-34) on fractures and bone mineral density in postmenopausal women with osteoporosis, N. Engl. J. Med., 344 (2001), 1434-1441.
doi: 10.1056/NEJM200105103441904. |
[17] |
R. O. C. Oreffoi, G. R. Mundyf, S. M. Seyedin and L. F. Bonewald, Activation of the bone-derived latent TGF-beta complex by isolated osteoclasts, Biochem. Biophys. Res. Comm., 158 (1989), 817-823.
doi: 10.1016/0006-291X(89)92795-2. |
[18] |
M. Peterson and M. Riggs, A physiologically based mathematical model of integrated calcium homeostasis and bone remodeling, Bone, 46 (2010), 49-63.
doi: 10.1016/j.bone.2009.08.053. |
[19] |
K. E. S. Poole and J. Reeve, Parathyroid hormone-a bone anabolic and catabolic agent, Current Opinion in Pharmacology, 5 (2005), 612-617. |
[20] |
J. F. Raposo, L. G. Sobrinho and H. G. Ferriera, A minimal mathematical model of calcium homeostasis, J. Clinical Endocrin. Metab., 87 (2002), 4330-4340.
doi: 10.1210/jc.2002-011870. |
[21] |
D. S. Ross, K. Mehta and A. Cabal, A mathematical model of bone biochemistry,, in preparation., ().
|
[22] |
E. Seeman and P. D. Delmas, Reconstructing the skeleton with intermittent parathyroid hormone, Trends Endocrinol. Metab., 12 (2001), 281-283.
doi: 10.1016/S1043-2760(01)00460-X. |
[23] |
R. P. Shrestha, C. V. Hollot, S. R. Chipkin, C. P. Schmitt and Y. Chait, A mathematical model of parathyroid hormone response to acute changes in plasma ionized calcium concentration in humans, Mathematical Biosciences, 226 (2010), 46-57.
doi: 10.1016/j.mbs.2010.04.001. |
[24] |
E. Slatopolsky, A. Brown and A. Dusso, Pathogenesis of secondary hyperparathyroidism, Kidney Int. Suppl., 73 (1999), S14-S19.
doi: 10.1046/j.1523-1755.1999.07304.x. |
[25] |
R. V. Talmage, G. E. Lester, P. F. Hirsch and J. Musculoske, Parathyroid hormone and plasma calcium control: An editorial, J. Musculoskel. Neuron. Interact., 1 (2000), 121-126. |
[26] |
S. L. Teitelbaum, Bone resorption by osteoclasts, Science, 289 (2000), 1501-1504.
doi: 10.1126/science.289.5484.1504. |
[27] |
H. Vaananen and T. Laitala-Leinonen, Osteoclast lineage and function, Arch. Biochem. Biophys., 473 (2008), 132-138.
doi: 10.1016/j.abb.2008.03.037. |
[28] |
L. Xing and B. F. Boyce, Regulation of apoptosis in osteoclasts and osteoblastic cells, Biochemical and Biophysical Research Communications, 328 (2005), 709-720.
doi: 10.1016/j.bbrc.2004.11.072. |
[29] |
M. Zumsande, D. Stiefs, S. Siegmund and T. Gross, General analysis of mathematical models for bone remodeling, Bone, 48 (2011), 910-917.
doi: 10.1016/j.bone.2010.12.010. |
[1] |
Erica M. Rutter, Yang Kuang. Global dynamics of a model of joint hormone treatment with dendritic cell vaccine for prostate cancer. Discrete and Continuous Dynamical Systems - B, 2017, 22 (3) : 1001-1021. doi: 10.3934/dcdsb.2017050 |
[2] |
Richard L Buckalew. Cell cycle clustering and quorum sensing in a response / signaling mediated feedback model. Discrete and Continuous Dynamical Systems - B, 2014, 19 (4) : 867-881. doi: 10.3934/dcdsb.2014.19.867 |
[3] |
Krzysztof Fujarewicz, Marek Kimmel, Andrzej Swierniak. On Fitting Of Mathematical Models Of Cell Signaling Pathways Using Adjoint Systems. Mathematical Biosciences & Engineering, 2005, 2 (3) : 527-534. doi: 10.3934/mbe.2005.2.527 |
[4] |
Fabien Crauste. Global Asymptotic Stability and Hopf Bifurcation for a Blood Cell Production Model. Mathematical Biosciences & Engineering, 2006, 3 (2) : 325-346. doi: 10.3934/mbe.2006.3.325 |
[5] |
Deqiong Ding, Wendi Qin, Xiaohua Ding. Lyapunov functions and global stability for a discretized multigroup SIR epidemic model. Discrete and Continuous Dynamical Systems - B, 2015, 20 (7) : 1971-1981. doi: 10.3934/dcdsb.2015.20.1971 |
[6] |
Jinliang Wang, Lijuan Guan. Global stability for a HIV-1 infection model with cell-mediated immune response and intracellular delay. Discrete and Continuous Dynamical Systems - B, 2012, 17 (1) : 297-302. doi: 10.3934/dcdsb.2012.17.297 |
[7] |
Andrey V. Melnik, Andrei Korobeinikov. Lyapunov functions and global stability for SIR and SEIR models with age-dependent susceptibility. Mathematical Biosciences & Engineering, 2013, 10 (2) : 369-378. doi: 10.3934/mbe.2013.10.369 |
[8] |
Yuyun Zhao, Yi Zhang, Tao Xu, Ling Bai, Qian Zhang. pth moment exponential stability of hybrid stochastic functional differential equations by feedback control based on discrete-time state observations. Discrete and Continuous Dynamical Systems - B, 2017, 22 (1) : 209-226. doi: 10.3934/dcdsb.2017011 |
[9] |
Carlos Arnoldo Morales, M. J. Pacifico. Lyapunov stability of $\omega$-limit sets. Discrete and Continuous Dynamical Systems, 2002, 8 (3) : 671-674. doi: 10.3934/dcds.2002.8.671 |
[10] |
Luis Barreira, Claudia Valls. Stability of nonautonomous equations and Lyapunov functions. Discrete and Continuous Dynamical Systems, 2013, 33 (7) : 2631-2650. doi: 10.3934/dcds.2013.33.2631 |
[11] |
Sergio Grillo, Jerrold E. Marsden, Sujit Nair. Lyapunov constraints and global asymptotic stabilization. Journal of Geometric Mechanics, 2011, 3 (2) : 145-196. doi: 10.3934/jgm.2011.3.145 |
[12] |
Jifeng Chu, Meirong Zhang. Rotation numbers and Lyapunov stability of elliptic periodic solutions. Discrete and Continuous Dynamical Systems, 2008, 21 (4) : 1071-1094. doi: 10.3934/dcds.2008.21.1071 |
[13] |
Sigurdur Freyr Hafstein. A constructive converse Lyapunov theorem on exponential stability. Discrete and Continuous Dynamical Systems, 2004, 10 (3) : 657-678. doi: 10.3934/dcds.2004.10.657 |
[14] |
Feng Wang, José Ángel Cid, Mirosława Zima. Lyapunov stability for regular equations and applications to the Liebau phenomenon. Discrete and Continuous Dynamical Systems, 2018, 38 (9) : 4657-4674. doi: 10.3934/dcds.2018204 |
[15] |
Jifeng Chu, Jinzhi Lei, Meirong Zhang. Lyapunov stability for conservative systems with lower degrees of freedom. Discrete and Continuous Dynamical Systems - B, 2011, 16 (2) : 423-443. doi: 10.3934/dcdsb.2011.16.423 |
[16] |
Georges Bastin, B. Haut, Jean-Michel Coron, Brigitte d'Andréa-Novel. Lyapunov stability analysis of networks of scalar conservation laws. Networks and Heterogeneous Media, 2007, 2 (4) : 751-759. doi: 10.3934/nhm.2007.2.751 |
[17] |
Volodymyr Pichkur. On practical stability of differential inclusions using Lyapunov functions. Discrete and Continuous Dynamical Systems - B, 2017, 22 (5) : 1977-1986. doi: 10.3934/dcdsb.2017116 |
[18] |
Jinliang Wang, Jiying Lang, Yuming Chen. Global dynamics of an age-structured HIV infection model incorporating latency and cell-to-cell transmission. Discrete and Continuous Dynamical Systems - B, 2017, 22 (10) : 3721-3747. doi: 10.3934/dcdsb.2017186 |
[19] |
Hossein Pourbashash, Sergei S. Pilyugin, Patrick De Leenheer, Connell McCluskey. Global analysis of within host virus models with cell-to-cell viral transmission. Discrete and Continuous Dynamical Systems - B, 2014, 19 (10) : 3341-3357. doi: 10.3934/dcdsb.2014.19.3341 |
[20] |
Hongjing Shi, Wanbiao Ma. An improved model of t cell development in the thymus and its stability analysis. Mathematical Biosciences & Engineering, 2006, 3 (1) : 237-248. doi: 10.3934/mbe.2006.3.237 |
2020 Impact Factor: 1.327
Tools
Metrics
Other articles
by authors
[Back to Top]