-
Previous Article
From a PDE model to an ODE model of dynamics of synaptic depression
- DCDS-B Home
- This Issue
- Next Article
A Neumann Boundary Value Problem in Two-Ion Electro-Diffusion with Unequal Valencies
1. | Departamento de Matemática, Universidad de Buenos Aires and CONICET, Ciudad Universitaria, Pabellón I, (1428) Buenos Aires |
2. | Department of Applied Mathematics, The Hong Kong Polytechnic University, Hunghom, Kowloon, Hong Kong |
3. | Australian Research Council Centre & Excellence for Mathematics & Statistics of Complex Systems, School of Mathematics and Statistics, The University of New South Wales, Sydney, Australia |
References:
[1] |
W. Nernst, Zur Kinetik der in Lösung befindlichen Körper: I Theorie der Diffusion, Z. Phys. Chem., 2 (1882), 613-637. |
[2] |
M. Planck, Über die Erregung von Elektricität und Wärme in Electrolyten, Ann. Phys. Chem., 39 (1890), 161-186. |
[3] |
K. S. Cole, "Membranes, Ions and Impulses," University of California Press, Berkeley, 1968. |
[4] |
T. L. Schwarz, "Biophysics and Physiology of Excitable Membranes" (ed. W. J. Adelman, Jr.), Van Rostrand, New York, 1971. |
[5] |
J. O'M Bokris and A. K. N. Reddy, "Modern Electrochemistry," Plenum, New York, 1971. |
[6] |
H. R. Leuchtag, A family of differential equations arising from multi-ion electrodiffusion, J. Mathematical Phys., 22 (1981), 1317-1320. |
[7] |
R. Conte, C. Rogers and W. K. Schief, Painlevé structure of a multi-ion electrodiffusion system, J. Phys. A, 40 (2007), F1031-F1040.
doi: 10.1088/1751-8113/40/48/F01. |
[8] |
H. B. Thompson, Existence for two-point boundary value problems in two-ion electrodiffusion, J. Math. Anal. Appl, 184 (1994), 82-94.
doi: 10.1006/jmaa.1994.1185. |
[9] |
B. M. Grafov and A. A. Chernenko, Theory of the passage of a constant current through a solution of a binary electrolyte, Dokl. Akad. Nauk. SSR, 146 (1962), 135-138. |
[10] |
L. Bass, Electrical structures of interfaces in steady electrolysis, Trans. Faraday Soc., 60 (1964), 1655-1663.
doi: 10.1039/tf9646001656. |
[11] |
N. A. Kudryashov, The second Painlevé equation as a model for the electric field in a semiconductor, Phys. Lett. A, 233 (1997), 397-400.
doi: 10.1016/S0375-9601(97)00545-8. |
[12] |
C. Rogers, A. Bassom and W. K. Schief, On a Painlevé II model in steady electrolysis: Application of a Bäcklund transformation, J. Math. Anal. Appl., 240 (1999), 367-381.
doi: 10.1006/jmaa.1999.6589. |
[13] |
L. Bass, J. Nimmo, C. Rogers and W. K. Schief, Enhanced structures of interfaces: A Painlevé II model, Proc. Roy. Soc. London Ser. A Math. Phys. Eng. Sci., 466 (2010), 2117-2136.
doi: 10.1098/rspa.2009.0620. |
[14] |
L. Bass, Irreversible interactions between metals and electrolytes, Proc. Roy. Soc. London A, 277 (1964), 125-136.
doi: 10.1098/rspa.1964.0009. |
[15] |
P. Amster, M. K. Kwong and C. Rogers, On a Neumann boundary value problem for Painlevé II in two-ion electro-diffusion, Nonlinear Analysis, Theory, Methods and Applications, in press. |
[16] |
C. De Coster and P. Habets, Upper and lower solutions in the theory of ODE boundary value problems: Classical and recent results, in "Nonlinear Analysis and Boundary Value Problems for ODEs," CISM Courses and Lectures, 371, Springer, Vienna, (1996), 1-78. |
show all references
References:
[1] |
W. Nernst, Zur Kinetik der in Lösung befindlichen Körper: I Theorie der Diffusion, Z. Phys. Chem., 2 (1882), 613-637. |
[2] |
M. Planck, Über die Erregung von Elektricität und Wärme in Electrolyten, Ann. Phys. Chem., 39 (1890), 161-186. |
[3] |
K. S. Cole, "Membranes, Ions and Impulses," University of California Press, Berkeley, 1968. |
[4] |
T. L. Schwarz, "Biophysics and Physiology of Excitable Membranes" (ed. W. J. Adelman, Jr.), Van Rostrand, New York, 1971. |
[5] |
J. O'M Bokris and A. K. N. Reddy, "Modern Electrochemistry," Plenum, New York, 1971. |
[6] |
H. R. Leuchtag, A family of differential equations arising from multi-ion electrodiffusion, J. Mathematical Phys., 22 (1981), 1317-1320. |
[7] |
R. Conte, C. Rogers and W. K. Schief, Painlevé structure of a multi-ion electrodiffusion system, J. Phys. A, 40 (2007), F1031-F1040.
doi: 10.1088/1751-8113/40/48/F01. |
[8] |
H. B. Thompson, Existence for two-point boundary value problems in two-ion electrodiffusion, J. Math. Anal. Appl, 184 (1994), 82-94.
doi: 10.1006/jmaa.1994.1185. |
[9] |
B. M. Grafov and A. A. Chernenko, Theory of the passage of a constant current through a solution of a binary electrolyte, Dokl. Akad. Nauk. SSR, 146 (1962), 135-138. |
[10] |
L. Bass, Electrical structures of interfaces in steady electrolysis, Trans. Faraday Soc., 60 (1964), 1655-1663.
doi: 10.1039/tf9646001656. |
[11] |
N. A. Kudryashov, The second Painlevé equation as a model for the electric field in a semiconductor, Phys. Lett. A, 233 (1997), 397-400.
doi: 10.1016/S0375-9601(97)00545-8. |
[12] |
C. Rogers, A. Bassom and W. K. Schief, On a Painlevé II model in steady electrolysis: Application of a Bäcklund transformation, J. Math. Anal. Appl., 240 (1999), 367-381.
doi: 10.1006/jmaa.1999.6589. |
[13] |
L. Bass, J. Nimmo, C. Rogers and W. K. Schief, Enhanced structures of interfaces: A Painlevé II model, Proc. Roy. Soc. London Ser. A Math. Phys. Eng. Sci., 466 (2010), 2117-2136.
doi: 10.1098/rspa.2009.0620. |
[14] |
L. Bass, Irreversible interactions between metals and electrolytes, Proc. Roy. Soc. London A, 277 (1964), 125-136.
doi: 10.1098/rspa.1964.0009. |
[15] |
P. Amster, M. K. Kwong and C. Rogers, On a Neumann boundary value problem for Painlevé II in two-ion electro-diffusion, Nonlinear Analysis, Theory, Methods and Applications, in press. |
[16] |
C. De Coster and P. Habets, Upper and lower solutions in the theory of ODE boundary value problems: Classical and recent results, in "Nonlinear Analysis and Boundary Value Problems for ODEs," CISM Courses and Lectures, 371, Springer, Vienna, (1996), 1-78. |
[1] |
Eugenio Montefusco, Benedetta Pellacci, Gianmaria Verzini. Fractional diffusion with Neumann boundary conditions: The logistic equation. Discrete and Continuous Dynamical Systems - B, 2013, 18 (8) : 2175-2202. doi: 10.3934/dcdsb.2013.18.2175 |
[2] |
Annegret Glitzky. Energy estimates for electro-reaction-diffusion systems with partly fast kinetics. Discrete and Continuous Dynamical Systems, 2009, 25 (1) : 159-174. doi: 10.3934/dcds.2009.25.159 |
[3] |
Shouming Zhou, Chunlai Mu, Yongsheng Mi, Fuchen Zhang. Blow-up for a non-local diffusion equation with exponential reaction term and Neumann boundary condition. Communications on Pure and Applied Analysis, 2013, 12 (6) : 2935-2946. doi: 10.3934/cpaa.2013.12.2935 |
[4] |
Anna Kostianko, Sergey Zelik. Inertial manifolds for 1D reaction-diffusion-advection systems. Part Ⅰ: Dirichlet and Neumann boundary conditions. Communications on Pure and Applied Analysis, 2017, 16 (6) : 2357-2376. doi: 10.3934/cpaa.2017116 |
[5] |
Costică Moroşanu, Bianca Satco. Qualitative and quantitative analysis for a nonlocal and nonlinear reaction-diffusion problem with in-homogeneous Neumann boundary conditions. Discrete and Continuous Dynamical Systems - S, 2022 doi: 10.3934/dcdss.2022042 |
[6] |
Elisa Sovrano. Ambrosetti-Prodi type result to a Neumann problem via a topological approach. Discrete and Continuous Dynamical Systems - S, 2018, 11 (2) : 345-355. doi: 10.3934/dcdss.2018019 |
[7] |
Sergiu Aizicovici, Nikolaos S. Papageorgiou, V. Staicu. The spectrum and an index formula for the Neumann $p-$Laplacian and multiple solutions for problems with a crossing nonlinearity. Discrete and Continuous Dynamical Systems, 2009, 25 (2) : 431-456. doi: 10.3934/dcds.2009.25.431 |
[8] |
Pablo Amster, Colin Rogers. On a Ermakov-Painlevé II reduction in three-ion electrodiffusion. A Dirichlet boundary value problem. Discrete and Continuous Dynamical Systems, 2015, 35 (8) : 3277-3292. doi: 10.3934/dcds.2015.35.3277 |
[9] |
Jianing Chen, Mingji Zhang. Boundary layer effects on ionic flows via Poisson-Nernst-Planck systems with nonuniform ion sizes. Discrete and Continuous Dynamical Systems - B, 2022 doi: 10.3934/dcdsb.2021312 |
[10] |
Kin Ming Hui, Sunghoon Kim. Existence of Neumann and singular solutions of the fast diffusion equation. Discrete and Continuous Dynamical Systems, 2015, 35 (10) : 4859-4887. doi: 10.3934/dcds.2015.35.4859 |
[11] |
Jean-François Coulombel, Frédéric Lagoutière. The Neumann numerical boundary condition for transport equations. Kinetic and Related Models, 2020, 13 (1) : 1-32. doi: 10.3934/krm.2020001 |
[12] |
T. J. Christiansen. Resonances and balls in obstacle scattering with Neumann boundary conditions. Inverse Problems and Imaging, 2008, 2 (3) : 335-340. doi: 10.3934/ipi.2008.2.335 |
[13] |
Rúben Sousa, Semyon Yakubovich. The spectral expansion approach to index transforms and connections with the theory of diffusion processes. Communications on Pure and Applied Analysis, 2018, 17 (6) : 2351-2378. doi: 10.3934/cpaa.2018112 |
[14] |
Bo Duan, Zhengce Zhang. A reaction-diffusion-advection two-species competition system with a free boundary in heterogeneous environment. Discrete and Continuous Dynamical Systems - B, 2022, 27 (2) : 837-861. doi: 10.3934/dcdsb.2021067 |
[15] |
Haitao Yang, Yibin Zhang. Boundary bubbling solutions for a planar elliptic problem with exponential Neumann data. Discrete and Continuous Dynamical Systems, 2017, 37 (10) : 5467-5502. doi: 10.3934/dcds.2017238 |
[16] |
Barbara Kaltenbacher, Irena Lasiecka. Well-posedness of the Westervelt and the Kuznetsov equation with nonhomogeneous Neumann boundary conditions. Conference Publications, 2011, 2011 (Special) : 763-773. doi: 10.3934/proc.2011.2011.763 |
[17] |
Zhenhua Zhang. Asymptotic behavior of solutions to the phase-field equations with neumann boundary conditions. Communications on Pure and Applied Analysis, 2005, 4 (3) : 683-693. doi: 10.3934/cpaa.2005.4.683 |
[18] |
Shu Luan. On the existence of optimal control for semilinear elliptic equations with nonlinear neumann boundary conditions. Mathematical Control and Related Fields, 2017, 7 (3) : 493-506. doi: 10.3934/mcrf.2017018 |
[19] |
Carmen Calvo-Jurado, Juan Casado-Díaz, Manuel Luna-Laynez. Parabolic problems with varying operators and Dirichlet and Neumann boundary conditions on varying sets. Conference Publications, 2007, 2007 (Special) : 181-190. doi: 10.3934/proc.2007.2007.181 |
[20] |
Jaeyoung Byeon, Sangdon Jin. The Hénon equation with a critical exponent under the Neumann boundary condition. Discrete and Continuous Dynamical Systems, 2018, 38 (9) : 4353-4390. doi: 10.3934/dcds.2018190 |
2021 Impact Factor: 1.497
Tools
Metrics
Other articles
by authors
[Back to Top]