October  2012, 17(7): 2465-2482. doi: 10.3934/dcdsb.2012.17.2465

Nonlinear conformation response in the finite channel: Existence of a unique solution for the dynamic PNP model

1. 

Department of Mathematics, Northwestern University, Evanston, IL 60208-2730, United States

Received  September 2011 Revised  February 2012 Published  July 2012

The standard PNP model for ion transport in channels in cell membranes has been widely studied during the previous two decades; there is a substantial literature for both the dynamic and steady models. What is currently lacking is a generally accepted gating model, which is linked to the observed conformation changes on the protein molecule. In [SIAM J. Appl. Math. 61 (2000), no.3, 792–802], C.W. Gardner, the author, and R.S. Eisen- berg suggested a model for the net charge density in the infinite channel, which has connections to stochastic dynamical systems, and which predicted rectan- gular current pulses. The finite channel was analyzed by these authors in [J. Theoret. Biol. 219 (2002), no. 3, 291–299]. The finite channel cannot, in general, be analyzed by a traveling wave approach. In this paper, a rigorous study of the initial-boundary value problem is carried out for the deterministic version of the finite channel; an existence/uniqueness result, with a weak maximum principle, is derived on the space-time domain under assumptions on the inital and boundary data which confine the channel to certain states. Significant open problems remain and are discussed
Citation: Joseph W. Jerome. Nonlinear conformation response in the finite channel: Existence of a unique solution for the dynamic PNP model. Discrete & Continuous Dynamical Systems - B, 2012, 17 (7) : 2465-2482. doi: 10.3934/dcdsb.2012.17.2465
References:
[1]

F. Alabau, On the existence of multiple steady-state solutions in the theory of electrodiffusion. I: The nonelectroneutral case. II: A constructive method for the electroneutral case, Trans. Amer. Math. Soc., 350 (1998), 4709-4756.  Google Scholar

[2]

J.-P. Aubin, Un théorème de compacité, C. R. Acad. Sci. Paris, 256 (1963), 5042-5044.  Google Scholar

[3]

V. Barcilon, D.-P. Chen, J. W. Jerome and R. S. Eisenberg, Qualitative properties of solutions of steady-state Poisson-Nernst-Planck systems: Perturbation and simulation study, SIAM J. Appl. Math., 57 (1997), 631-648.  Google Scholar

[4]

R. S. Eisenberg, M. M. Klosek and Z. Schuss, Diffusion as a chemical reaction: Stochastic trajectories between fixed concentrations, J. Chemical Physics, 102 (1995), 1767-1780. doi: 10.1063/1.468704.  Google Scholar

[5]

B. Fiedler, S. Liebscher and J. C. Alexander, General Hopf bifurcation from lines of equilibria without parameters. I. Theory, J. Differential Equations, 167 (2000), 16-35.  Google Scholar

[6]

B. Fiedler, S. Liebscher and J. C. Alexander, Generic Hopf bifurcation from lines of equilibria without parameters. III. Binary oscillations, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 10 (2000), 1613-1621.  Google Scholar

[7]

C. L. Gardner, private communication, December, 2011. Google Scholar

[8]

C. L. Gardner, J. W. Jerome and R. S. Eisenberg, Electrodiffusion model of rectangular current pulses in ionic channels of cellular membranes, SIAM J. Appl. Math., 61 (2000), 792-802.  Google Scholar

[9]

C. L. Gardner, J. W. Jerome and R. S. Eisenberg, Electrodiffusion model simulation of rectangular current pulses ina voltage-biased biological channel, J. Theoret. Biol., 219 (2002), 291-299.  Google Scholar

[10]

D. Gilbarg and N. Trudinger, "Elliptic Partial Differential Equations of Second Order,'' Reprint of the 1998 edition, Classics in Mathematics, Springer-Verlag, Berlin, 2001.  Google Scholar

[11]

I. Halperin, "Introduction to the Theory of Distributions. Based on the Lectures Given by Laurent Schwartz,'' University ofToronto Press, Toronto, 1952.  Google Scholar

[12]

B. Hille, "Ionic Channels of Excitable Membranes,'' Second edition, Sinauer, Sunderland, MA, 1992. Google Scholar

[13]

J. W. Jerome, "Approximation of Nonlinear Evolution Systems,'' Mathematics in Science and Engineering, 164, Academic Press, Inc., Orlando, FL, 1983.  Google Scholar

[14]

J. W. Jerome, Consistency of semiconductor modeling: An existence/stability analysis for the stationary Van Roosbroeck system, SIAM J. Appl. Math., 45 (1985), 565-590.  Google Scholar

[15]

J. W. Jerome, Evolution systems in semiconductor device modeling: A cyclic uncoupled line analysis for the Gummel map, Math. Methods Appl. Sci., 9 (1987), 455-492.  Google Scholar

[16]

J. W. Jerome, A trapping principle and convergence results for finite element approximate solutions of steady reaction/diffusion systems, Numer. Math., 109 (2008), 121-142.  Google Scholar

[17]

M. Krupa, Robust heteroclinic cycles, J. Nonlinear Sci., 7 (1997), 129-176.  Google Scholar

[18]

W. Liu and B. Wang, Poisson-Nernst-Planck systems for narrow tubular-like membrane channels, J. Dynam. Differential Equations, 22 (2010), 413-437.  Google Scholar

[19]

E. Neher and B. Sackmann, Single-channel currents recorded from membrane of denervated frog muscle-fibers, Nature, 260 (1976), 799-802. Google Scholar

[20]

H. L. Royden, "Real Analysis,'' Third edition, Macmillan Publishing Company, New York, 1988.  Google Scholar

[21]

T. Seidman and G. M. Troianiello, Time-dependent solutions of a nonlinear system arising in semiconductor theory, Nonlinear Analysis, 9 (1985), 1137-1157.  Google Scholar

[22]

Z. S. Siwy, M. R. Powell, A. Petrov, E. Kalman, C. Trautmann and R. S. Eisenberg, Calcium induced voltage gating in single conical nanopores, Nano Letters, 6 (2006), 1729-1734. Google Scholar

[23]

E. Stone and P. Holmes, Random perturbations of heteroclinic attractors, SIAM J. Appl. Math., 50 (1990), 726-743.  Google Scholar

[24]

P. Szmolyan, Traveling waves in GaAs-semiconductors, Physica D, 39 (1989), 393-404.  Google Scholar

show all references

References:
[1]

F. Alabau, On the existence of multiple steady-state solutions in the theory of electrodiffusion. I: The nonelectroneutral case. II: A constructive method for the electroneutral case, Trans. Amer. Math. Soc., 350 (1998), 4709-4756.  Google Scholar

[2]

J.-P. Aubin, Un théorème de compacité, C. R. Acad. Sci. Paris, 256 (1963), 5042-5044.  Google Scholar

[3]

V. Barcilon, D.-P. Chen, J. W. Jerome and R. S. Eisenberg, Qualitative properties of solutions of steady-state Poisson-Nernst-Planck systems: Perturbation and simulation study, SIAM J. Appl. Math., 57 (1997), 631-648.  Google Scholar

[4]

R. S. Eisenberg, M. M. Klosek and Z. Schuss, Diffusion as a chemical reaction: Stochastic trajectories between fixed concentrations, J. Chemical Physics, 102 (1995), 1767-1780. doi: 10.1063/1.468704.  Google Scholar

[5]

B. Fiedler, S. Liebscher and J. C. Alexander, General Hopf bifurcation from lines of equilibria without parameters. I. Theory, J. Differential Equations, 167 (2000), 16-35.  Google Scholar

[6]

B. Fiedler, S. Liebscher and J. C. Alexander, Generic Hopf bifurcation from lines of equilibria without parameters. III. Binary oscillations, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 10 (2000), 1613-1621.  Google Scholar

[7]

C. L. Gardner, private communication, December, 2011. Google Scholar

[8]

C. L. Gardner, J. W. Jerome and R. S. Eisenberg, Electrodiffusion model of rectangular current pulses in ionic channels of cellular membranes, SIAM J. Appl. Math., 61 (2000), 792-802.  Google Scholar

[9]

C. L. Gardner, J. W. Jerome and R. S. Eisenberg, Electrodiffusion model simulation of rectangular current pulses ina voltage-biased biological channel, J. Theoret. Biol., 219 (2002), 291-299.  Google Scholar

[10]

D. Gilbarg and N. Trudinger, "Elliptic Partial Differential Equations of Second Order,'' Reprint of the 1998 edition, Classics in Mathematics, Springer-Verlag, Berlin, 2001.  Google Scholar

[11]

I. Halperin, "Introduction to the Theory of Distributions. Based on the Lectures Given by Laurent Schwartz,'' University ofToronto Press, Toronto, 1952.  Google Scholar

[12]

B. Hille, "Ionic Channels of Excitable Membranes,'' Second edition, Sinauer, Sunderland, MA, 1992. Google Scholar

[13]

J. W. Jerome, "Approximation of Nonlinear Evolution Systems,'' Mathematics in Science and Engineering, 164, Academic Press, Inc., Orlando, FL, 1983.  Google Scholar

[14]

J. W. Jerome, Consistency of semiconductor modeling: An existence/stability analysis for the stationary Van Roosbroeck system, SIAM J. Appl. Math., 45 (1985), 565-590.  Google Scholar

[15]

J. W. Jerome, Evolution systems in semiconductor device modeling: A cyclic uncoupled line analysis for the Gummel map, Math. Methods Appl. Sci., 9 (1987), 455-492.  Google Scholar

[16]

J. W. Jerome, A trapping principle and convergence results for finite element approximate solutions of steady reaction/diffusion systems, Numer. Math., 109 (2008), 121-142.  Google Scholar

[17]

M. Krupa, Robust heteroclinic cycles, J. Nonlinear Sci., 7 (1997), 129-176.  Google Scholar

[18]

W. Liu and B. Wang, Poisson-Nernst-Planck systems for narrow tubular-like membrane channels, J. Dynam. Differential Equations, 22 (2010), 413-437.  Google Scholar

[19]

E. Neher and B. Sackmann, Single-channel currents recorded from membrane of denervated frog muscle-fibers, Nature, 260 (1976), 799-802. Google Scholar

[20]

H. L. Royden, "Real Analysis,'' Third edition, Macmillan Publishing Company, New York, 1988.  Google Scholar

[21]

T. Seidman and G. M. Troianiello, Time-dependent solutions of a nonlinear system arising in semiconductor theory, Nonlinear Analysis, 9 (1985), 1137-1157.  Google Scholar

[22]

Z. S. Siwy, M. R. Powell, A. Petrov, E. Kalman, C. Trautmann and R. S. Eisenberg, Calcium induced voltage gating in single conical nanopores, Nano Letters, 6 (2006), 1729-1734. Google Scholar

[23]

E. Stone and P. Holmes, Random perturbations of heteroclinic attractors, SIAM J. Appl. Math., 50 (1990), 726-743.  Google Scholar

[24]

P. Szmolyan, Traveling waves in GaAs-semiconductors, Physica D, 39 (1989), 393-404.  Google Scholar

[1]

Abdelaaziz Sbai, Youssef El Hadfi, Mohammed Srati, Noureddine Aboutabit. Existence of solution for Kirchhoff type problem in Orlicz-Sobolev spaces Via Leray-Schauder's nonlinear alternative. Discrete & Continuous Dynamical Systems - S, 2021  doi: 10.3934/dcdss.2021015

[2]

Shui-Hung Hou. On an application of fixed point theorem to nonlinear inclusions. Conference Publications, 2011, 2011 (Special) : 692-697. doi: 10.3934/proc.2011.2011.692

[3]

Christian Beck, Lukas Gonon, Martin Hutzenthaler, Arnulf Jentzen. On existence and uniqueness properties for solutions of stochastic fixed point equations. Discrete & Continuous Dynamical Systems - B, 2021, 26 (9) : 4927-4962. doi: 10.3934/dcdsb.2020320

[4]

Carlos E. Kenig. The method of energy channels for nonlinear wave equations. Discrete & Continuous Dynamical Systems, 2019, 39 (12) : 6979-6993. doi: 10.3934/dcds.2019240

[5]

Tiziana Cardinali, Paola Rubbioni. Existence theorems for generalized nonlinear quadratic integral equations via a new fixed point result. Discrete & Continuous Dynamical Systems - S, 2020, 13 (7) : 1947-1955. doi: 10.3934/dcdss.2020152

[6]

Zhongyi Huang. Tailored finite point method for the interface problem. Networks & Heterogeneous Media, 2009, 4 (1) : 91-106. doi: 10.3934/nhm.2009.4.91

[7]

Jeffrey W. Lyons. An application of an avery type fixed point theorem to a second order antiperiodic boundary value problem. Conference Publications, 2015, 2015 (special) : 775-782. doi: 10.3934/proc.2015.0775

[8]

Brandon Seward. Krieger's finite generator theorem for actions of countable groups Ⅱ. Journal of Modern Dynamics, 2019, 15: 1-39. doi: 10.3934/jmd.2019012

[9]

Pavlos Xanthopoulos, Georgios E. Zouraris. A linearly implicit finite difference method for a Klein-Gordon-Schrödinger system modeling electron-ion plasma waves. Discrete & Continuous Dynamical Systems - B, 2008, 10 (1) : 239-263. doi: 10.3934/dcdsb.2008.10.239

[10]

Igor Griva, Roman A. Polyak. Proximal point nonlinear rescaling method for convex optimization. Numerical Algebra, Control & Optimization, 2011, 1 (2) : 283-299. doi: 10.3934/naco.2011.1.283

[11]

Stanisław Migórski, Shengda Zeng. The Rothe method for multi-term time fractional integral diffusion equations. Discrete & Continuous Dynamical Systems - B, 2019, 24 (2) : 719-735. doi: 10.3934/dcdsb.2018204

[12]

Dominique Blanchard, Nicolas Bruyère, Olivier Guibé. Existence and uniqueness of the solution of a Boussinesq system with nonlinear dissipation. Communications on Pure & Applied Analysis, 2013, 12 (5) : 2213-2227. doi: 10.3934/cpaa.2013.12.2213

[13]

Jing Cui, Shu-Ming Sun. Nonlinear Schrödinger equations on a finite interval with point dissipation. Mathematical Control & Related Fields, 2019, 9 (2) : 351-384. doi: 10.3934/mcrf.2019017

[14]

Z. Reichstein and B. Youssin. Parusinski's "Key Lemma" via algebraic geometry. Electronic Research Announcements, 1999, 5: 136-145.

[15]

Nicholas Long. Fixed point shifts of inert involutions. Discrete & Continuous Dynamical Systems, 2009, 25 (4) : 1297-1317. doi: 10.3934/dcds.2009.25.1297

[16]

Martin Burger, José A. Carrillo, Marie-Therese Wolfram. A mixed finite element method for nonlinear diffusion equations. Kinetic & Related Models, 2010, 3 (1) : 59-83. doi: 10.3934/krm.2010.3.59

[17]

Hao Wang, Wei Yang, Yunqing Huang. An adaptive edge finite element method for the Maxwell's equations in metamaterials. Electronic Research Archive, 2020, 28 (2) : 961-976. doi: 10.3934/era.2020051

[18]

Lateef Olakunle Jolaoso, Maggie Aphane. Bregman subgradient extragradient method with monotone self-adjustment stepsize for solving pseudo-monotone variational inequalities and fixed point problems. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020178

[19]

Adeolu Taiwo, Lateef Olakunle Jolaoso, Oluwatosin Temitope Mewomo. Viscosity approximation method for solving the multiple-set split equality common fixed-point problems for quasi-pseudocontractive mappings in Hilbert spaces. Journal of Industrial & Management Optimization, 2021, 17 (5) : 2733-2759. doi: 10.3934/jimo.2020092

[20]

Francis Akutsah, Akindele Adebayo Mebawondu, Hammed Anuoluwapo Abass, Ojen Kumar Narain. A self adaptive method for solving a class of bilevel variational inequalities with split variational inequality and composed fixed point problem constraints in Hilbert spaces. Numerical Algebra, Control & Optimization, 2021  doi: 10.3934/naco.2021046

2020 Impact Factor: 1.327

Metrics

  • PDF downloads (48)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]