\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

A vector-bias malaria model with incubation period and diffusion

Abstract Related Papers Cited by
  • This paper is devoted to the study of the global dynamics of a vector-bias malaria model with incubation period and diffusion. The global attractivity of the disease-free or endemic equilibrium is first proved for the spatially homogeneous system. Then the threshold dynamics is established for the spatially heterogeneous system in terms of the basic reproduction ratio. A set of sufficient conditions is further obtained for the global attractivity of the positive steady state.
    Mathematics Subject Classification: Primary: 35K57, 37N25; Secondary: 92D30.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    F. Chamchod and N. F. Britton, Analysis of a vector-bias model on malaria transmisson, Bull. Math. Biol., 73 (2011), 639-657.doi: 10.1007/s11538-010-9545-0.

    [2]

    C. A. Guerra, R. W. Snow and S. I. Hay, Mapping the global extent of malaria in 2005, Trends Parasitol, 22 (2006), 353-358.doi: 10.1016/j.pt.2006.06.006.

    [3]

    J. K. Hale and S. M. Verduyn Lunel, "Introduction to Functional Differential Equations," Appl. Math. Sci., Vol. 99, Springer-Verlag, New York, 1993.

    [4]

    J. G. Kingsolver, Mosquito host choice and the epidemiology of malaria, Am. Nat., 130 (1987), 811-827.doi: 10.1086/284749.

    [5]

    R. Lacroix, W. R. Mukabana, L. C. Gouagna and J. C. Koella, Malaria infection increases attractiveness of humans to mosquitoes, PLOS Biol., 3 (2005), 1590-1593.

    [6]

    Y. Lou and X.-Q. Zhao, A reaction-diffusion malaria model with incubation period in the vector population, J. Math. Biol., 62 (2011), 543-568.doi: 10.1007/s00285-010-0346-8.

    [7]

    P. Magal and X.-Q. Zhao, Global attractors and steady states for uniformly persistent dynamical systems, SIAM J. Math. Anal., 37 (2005), 251-275.doi: 10.1137/S0036141003439173.

    [8]

    R. H. Martin and H. L. Smith, Abstract functional differential equations and reaction-diffusion systems, Trans. Amer. Math. Soc., 321 (1990), 1-44.doi: 10.1090/S0002-9947-1990-0967316-X.

    [9]

    K. Mischaikow, H. L. Smith and H. R. Thieme, Asymptotically autonomous semiflows: Chain recurrence and Lyapunov functions, Trans. Amer. Math. Soc., 347 (1995), 1669-1685.doi: 10.1090/S0002-9947-1995-1290727-7.

    [10]

    H. L Smith, "Monotone Dynamical Systems. An Introduction to the Theory of Competitive and Cooperative Systems," Mathematical Surveys and Monographs, Vol. 41, Amer. Math. Soc., Providence, RI, 1995.

    [11]

    H. L. Smith and X.-Q. Zhao, Robust persistence for semidynamical systems, Nonlinear Analysis, 47 (2001), 6169-6179.doi: 10.1016/S0362-546X(01)00678-2.

    [12]

    R. W. Snow, C. A. Guerra, A. M. Noor, H. Y. Myint and S. I. Hay, The global distribution of clinical episodes of Plasmodium falciparum malaria, Nature, 434 (2005), 214-217.doi: 10.1038/nature03342.

    [13]

    H. R. Thieme, Convergence results and a Poincaré-Bendixson trichotomy for asymptotically autonomous differential equations, J. Math. Biol., 30 (1992), 755-763.doi: 10.1007/BF00173267.

    [14]

    H. R. Thieme, Spectral bound and reproduction number for infinite-dimensional population structure and time heterogeneity, SIAM J. Appl. Math., 70 (2009), 188-211.doi: 10.1137/080732870.

    [15]

    H. R. Thieme and X.-Q. Zhao, A non-local delayed and diffusive predator-prey model, Nonlinear Analysis: Real World Application, 2 (2001), 145-160.

    [16]

    W. Wang and X.-Q. Zhao, A nonlocal and time-delayed reaction-diffusion model of dengue transmission, SIAM J. Appl. Math., 71 (2011), 147-168.doi: 10.1137/090775890.

    [17]

    J. Wu, "Theory and Applications of Partial Functional Differential Equations," Applied Mathematical Sciences, 119, Springer-Verlag, New York, 1996.

    [18]

    X.-Q. Zhao, "Dynamical Systems in Population Biology," CMS Books in Mathematics/Ouvrages de Mathmatiques de la SMC, 16, Springer-Verlag, New York, 2003.

    [19]

    X.-Q. Zhao and Z.-J. Jing, Global asymptotic behavior in some cooperative systems of functional differential equations, Canadian Appl. Math. Quarterly, 4 (1996), 421-444.

  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(265) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return