Citation: |
[1] |
F. Chamchod and N. F. Britton, Analysis of a vector-bias model on malaria transmisson, Bull. Math. Biol., 73 (2011), 639-657.doi: 10.1007/s11538-010-9545-0. |
[2] |
C. A. Guerra, R. W. Snow and S. I. Hay, Mapping the global extent of malaria in 2005, Trends Parasitol, 22 (2006), 353-358.doi: 10.1016/j.pt.2006.06.006. |
[3] |
J. K. Hale and S. M. Verduyn Lunel, "Introduction to Functional Differential Equations," Appl. Math. Sci., Vol. 99, Springer-Verlag, New York, 1993. |
[4] |
J. G. Kingsolver, Mosquito host choice and the epidemiology of malaria, Am. Nat., 130 (1987), 811-827.doi: 10.1086/284749. |
[5] |
R. Lacroix, W. R. Mukabana, L. C. Gouagna and J. C. Koella, Malaria infection increases attractiveness of humans to mosquitoes, PLOS Biol., 3 (2005), 1590-1593. |
[6] |
Y. Lou and X.-Q. Zhao, A reaction-diffusion malaria model with incubation period in the vector population, J. Math. Biol., 62 (2011), 543-568.doi: 10.1007/s00285-010-0346-8. |
[7] |
P. Magal and X.-Q. Zhao, Global attractors and steady states for uniformly persistent dynamical systems, SIAM J. Math. Anal., 37 (2005), 251-275.doi: 10.1137/S0036141003439173. |
[8] |
R. H. Martin and H. L. Smith, Abstract functional differential equations and reaction-diffusion systems, Trans. Amer. Math. Soc., 321 (1990), 1-44.doi: 10.1090/S0002-9947-1990-0967316-X. |
[9] |
K. Mischaikow, H. L. Smith and H. R. Thieme, Asymptotically autonomous semiflows: Chain recurrence and Lyapunov functions, Trans. Amer. Math. Soc., 347 (1995), 1669-1685.doi: 10.1090/S0002-9947-1995-1290727-7. |
[10] |
H. L Smith, "Monotone Dynamical Systems. An Introduction to the Theory of Competitive and Cooperative Systems," Mathematical Surveys and Monographs, Vol. 41, Amer. Math. Soc., Providence, RI, 1995. |
[11] |
H. L. Smith and X.-Q. Zhao, Robust persistence for semidynamical systems, Nonlinear Analysis, 47 (2001), 6169-6179.doi: 10.1016/S0362-546X(01)00678-2. |
[12] |
R. W. Snow, C. A. Guerra, A. M. Noor, H. Y. Myint and S. I. Hay, The global distribution of clinical episodes of Plasmodium falciparum malaria, Nature, 434 (2005), 214-217.doi: 10.1038/nature03342. |
[13] |
H. R. Thieme, Convergence results and a Poincaré-Bendixson trichotomy for asymptotically autonomous differential equations, J. Math. Biol., 30 (1992), 755-763.doi: 10.1007/BF00173267. |
[14] |
H. R. Thieme, Spectral bound and reproduction number for infinite-dimensional population structure and time heterogeneity, SIAM J. Appl. Math., 70 (2009), 188-211.doi: 10.1137/080732870. |
[15] |
H. R. Thieme and X.-Q. Zhao, A non-local delayed and diffusive predator-prey model, Nonlinear Analysis: Real World Application, 2 (2001), 145-160. |
[16] |
W. Wang and X.-Q. Zhao, A nonlocal and time-delayed reaction-diffusion model of dengue transmission, SIAM J. Appl. Math., 71 (2011), 147-168.doi: 10.1137/090775890. |
[17] |
J. Wu, "Theory and Applications of Partial Functional Differential Equations," Applied Mathematical Sciences, 119, Springer-Verlag, New York, 1996. |
[18] |
X.-Q. Zhao, "Dynamical Systems in Population Biology," CMS Books in Mathematics/Ouvrages de Mathmatiques de la SMC, 16, Springer-Verlag, New York, 2003. |
[19] |
X.-Q. Zhao and Z.-J. Jing, Global asymptotic behavior in some cooperative systems of functional differential equations, Canadian Appl. Math. Quarterly, 4 (1996), 421-444. |