November  2012, 17(8): 2653-2669. doi: 10.3934/dcdsb.2012.17.2653

Exact travelling wave solutions of three-species competition--diffusion systems

1. 

Department of Mathematics, National Taiwan University, and National Center for Theoretical Sciences (Taipei Office), No. 1, Sec. 4, Roosevelt Road, Taipei, 10617, Taiwan

2. 

Department of Mathematics, National Taiwan University, and National Center for Theoretical Sciences (Taipei Office), No. 1, Sec. 4, Roosevelt Road, Taipei, 10617, Taiwan

3. 

Meiji Institute for Advanced Study of Mathematical Sciences, Meiji University, 1-1-1 Higashimita, Tamaku, Kawasaki 214-8571, Japan

4. 

Meiji Institute for Advanced Study of Mathematical Sciences, and Graduate School of Advanced Mathematical Sciences, Meiji University, 1-1-1 Higashimita, Tamaku, Kawasaki 214-8571, Japan

Received  March 2011 Revised  September 2011 Published  July 2012

We consider the problem where $W$ invades the $(U,V)$ system in the three species Lotka-Volterra competition-diffusion model. Numerical simulation indicates that the presence of $W$ can dramatically change the competitive interaction between $U$ and $V$ in some parameter range if the invading $W$ is not too small. We also construct exact travelling wave solutions with non-trivial three components and track the bifurcation branches of these solutions by AUTO.
Citation: Chiun-Chuan Chen, Li-Chang Hung, Masayasu Mimura, Daishin Ueyama. Exact travelling wave solutions of three-species competition--diffusion systems. Discrete and Continuous Dynamical Systems - B, 2012, 17 (8) : 2653-2669. doi: 10.3934/dcdsb.2012.17.2653
References:
[1]

E. J. Doedel, B. E. Oldeman, A. R. Champneys, F. Dercole, T. F. Fairgrieve, Y. Kuznetsov, R. C. Paffenroth, B. Sandstede, X. J. Wang and C. H. Zhang, "AUTO-07p: Continuation and Bifurcation Software for Ordinary Differential Equations," Concordia Univ., Version 0.7, 2010. Available from: http://sourceforge.net/projects/auto-07p/files/auto07p/

[2]

S.-I. Ei, R. Ikota and M. Mimura, Segregating partition problem in competition-diffusion systems, J. Interfaces and Free Boundaries, 1 (1999), 57-80.

[3]

M. W. Hirsch, Stability and convergence in strongly monotone dynamical systems, J. Reine Angew. Math., 383 (1988), 1-53.

[4]

J. Hofbauer and K. Sigmund, "Evolutionary Games and Population Dynamics," Cambridge University Press, Cambridge, 1998.

[5]

, H. Ikeda, Unpublished.

[6]

Y. Kannon, Traveling waves in systems of two competing species, Sūgaku, 49 (1997), 379-392.

[7]

K. Kishimoto and H. F. Weinberger, The spatial homogeneity of stable equilibria of some reaction-diffusion systems on convex domains, J. Differential Equations, 58 (1985), 15-21. doi: 10.1016/0022-0396(85)90020-8.

[8]

M. Rodrigo and M. Mimura, Exact solutions of a competition-diffusion system, Hiroshima Math. J., 30 (2000), 257-270.

[9]

M. Rodrigo and M. Mimura, Exact solutions of reaction-diffusion systems and nonlinear wave equations, Japan J. Indust. Appl. Math., 18 (2001), 657-696. doi: 10.1007/BF03167410.

[10]

S. Wolfram, "Mathematica: A System for Doing Mathematics by Computer," Addison-Wesley Longman Publishing Co., Inc., Boston, MA, 1988.

[11]

M. L. Zeeman, Hopf bifurcations in competitive three-dimensional Lotka-Volterra systems, Dynam. Stability Systems, 8 (1993), 189-217.

show all references

References:
[1]

E. J. Doedel, B. E. Oldeman, A. R. Champneys, F. Dercole, T. F. Fairgrieve, Y. Kuznetsov, R. C. Paffenroth, B. Sandstede, X. J. Wang and C. H. Zhang, "AUTO-07p: Continuation and Bifurcation Software for Ordinary Differential Equations," Concordia Univ., Version 0.7, 2010. Available from: http://sourceforge.net/projects/auto-07p/files/auto07p/

[2]

S.-I. Ei, R. Ikota and M. Mimura, Segregating partition problem in competition-diffusion systems, J. Interfaces and Free Boundaries, 1 (1999), 57-80.

[3]

M. W. Hirsch, Stability and convergence in strongly monotone dynamical systems, J. Reine Angew. Math., 383 (1988), 1-53.

[4]

J. Hofbauer and K. Sigmund, "Evolutionary Games and Population Dynamics," Cambridge University Press, Cambridge, 1998.

[5]

, H. Ikeda, Unpublished.

[6]

Y. Kannon, Traveling waves in systems of two competing species, Sūgaku, 49 (1997), 379-392.

[7]

K. Kishimoto and H. F. Weinberger, The spatial homogeneity of stable equilibria of some reaction-diffusion systems on convex domains, J. Differential Equations, 58 (1985), 15-21. doi: 10.1016/0022-0396(85)90020-8.

[8]

M. Rodrigo and M. Mimura, Exact solutions of a competition-diffusion system, Hiroshima Math. J., 30 (2000), 257-270.

[9]

M. Rodrigo and M. Mimura, Exact solutions of reaction-diffusion systems and nonlinear wave equations, Japan J. Indust. Appl. Math., 18 (2001), 657-696. doi: 10.1007/BF03167410.

[10]

S. Wolfram, "Mathematica: A System for Doing Mathematics by Computer," Addison-Wesley Longman Publishing Co., Inc., Boston, MA, 1988.

[11]

M. L. Zeeman, Hopf bifurcations in competitive three-dimensional Lotka-Volterra systems, Dynam. Stability Systems, 8 (1993), 189-217.

[1]

Chaohong Pan, Hongyong Wang, Chunhua Ou. Invasive speed for a competition-diffusion system with three species. Discrete and Continuous Dynamical Systems - B, 2022, 27 (6) : 3515-3532. doi: 10.3934/dcdsb.2021194

[2]

Daozhou Gao, Xing Liang. A competition-diffusion system with a refuge. Discrete and Continuous Dynamical Systems - B, 2007, 8 (2) : 435-454. doi: 10.3934/dcdsb.2007.8.435

[3]

Jong-Shenq Guo, Ying-Chih Lin. The sign of the wave speed for the Lotka-Volterra competition-diffusion system. Communications on Pure and Applied Analysis, 2013, 12 (5) : 2083-2090. doi: 10.3934/cpaa.2013.12.2083

[4]

Hirofumi Izuhara, Shunsuke Kobayashi. Spatio-temporal coexistence in the cross-diffusion competition system. Discrete and Continuous Dynamical Systems - S, 2021, 14 (3) : 919-933. doi: 10.3934/dcdss.2020228

[5]

Nahla Abdellatif, Radhouane Fekih-Salem, Tewfik Sari. Competition for a single resource and coexistence of several species in the chemostat. Mathematical Biosciences & Engineering, 2016, 13 (4) : 631-652. doi: 10.3934/mbe.2016012

[6]

Yuan Lou, Daniel Munther. Dynamics of a three species competition model. Discrete and Continuous Dynamical Systems, 2012, 32 (9) : 3099-3131. doi: 10.3934/dcds.2012.32.3099

[7]

Xiaojie Hou, Yi Li. Traveling waves in a three species competition-cooperation system. Communications on Pure and Applied Analysis, 2017, 16 (4) : 1103-1120. doi: 10.3934/cpaa.2017053

[8]

M. Guedda, R. Kersner, M. Klincsik, E. Logak. Exact wavefronts and periodic patterns in a competition system with nonlinear diffusion. Discrete and Continuous Dynamical Systems - B, 2014, 19 (6) : 1589-1600. doi: 10.3934/dcdsb.2014.19.1589

[9]

Yukio Kan-On. Structure on the set of radially symmetric positive stationary solutions for a competition-diffusion system. Conference Publications, 2013, 2013 (special) : 427-436. doi: 10.3934/proc.2013.2013.427

[10]

E. C.M. Crooks, E. N. Dancer, Danielle Hilhorst. Fast reaction limit and long time behavior for a competition-diffusion system with Dirichlet boundary conditions. Discrete and Continuous Dynamical Systems - B, 2007, 8 (1) : 39-44. doi: 10.3934/dcdsb.2007.8.39

[11]

Qian Guo, Xiaoqing He, Wei-Ming Ni. Global dynamics of a general Lotka-Volterra competition-diffusion system in heterogeneous environments. Discrete and Continuous Dynamical Systems, 2020, 40 (11) : 6547-6573. doi: 10.3934/dcds.2020290

[12]

Xiongxiong Bao, Wan-Tong Li, Zhi-Cheng Wang. Uniqueness and stability of time-periodic pyramidal fronts for a periodic competition-diffusion system. Communications on Pure and Applied Analysis, 2020, 19 (1) : 253-277. doi: 10.3934/cpaa.2020014

[13]

Yoshihisa Morita, Ken-Ichi Nakamura, Toshiko Ogiwara. Front propagation and blocking for the competition-diffusion system in a domain of half-lines with a junction. Discrete and Continuous Dynamical Systems - B, 2022  doi: 10.3934/dcdsb.2022136

[14]

Xianyong Chen, Weihua Jiang. Multiple spatiotemporal coexistence states and Turing-Hopf bifurcation in a Lotka-Volterra competition system with nonlocal delays. Discrete and Continuous Dynamical Systems - B, 2021, 26 (12) : 6185-6205. doi: 10.3934/dcdsb.2021013

[15]

Hua Nie, Sze-Bi Hsu, Jianhua Wu. Coexistence solutions of a competition model with two species in a water column. Discrete and Continuous Dynamical Systems - B, 2015, 20 (8) : 2691-2714. doi: 10.3934/dcdsb.2015.20.2691

[16]

Wei-Ming Ni, Masaharu Taniguchi. Traveling fronts of pyramidal shapes in competition-diffusion systems. Networks and Heterogeneous Media, 2013, 8 (1) : 379-395. doi: 10.3934/nhm.2013.8.379

[17]

Benlong Xu, Hongyan Jiang. Invasion and coexistence of competition-diffusion-advection system with heterogeneous vs homogeneous resources. Discrete and Continuous Dynamical Systems - B, 2018, 23 (10) : 4255-4266. doi: 10.3934/dcdsb.2018136

[18]

Guo-Bao Zhang, Fang-Di Dong, Wan-Tong Li. Uniqueness and stability of traveling waves for a three-species competition system with nonlocal dispersal. Discrete and Continuous Dynamical Systems - B, 2019, 24 (4) : 1511-1541. doi: 10.3934/dcdsb.2018218

[19]

Anton S. Zadorin. Exact travelling solution for a reaction-diffusion system with a piecewise constant production supported by a codimension-1 subspace. Communications on Pure and Applied Analysis, 2022, 21 (5) : 1567-1580. doi: 10.3934/cpaa.2022030

[20]

Bo Duan, Zhengce Zhang. A two-species weak competition system of reaction-diffusion-advection with double free boundaries. Discrete and Continuous Dynamical Systems - B, 2019, 24 (2) : 801-829. doi: 10.3934/dcdsb.2018208

2021 Impact Factor: 1.497

Metrics

  • PDF downloads (181)
  • HTML views (0)
  • Cited by (15)

[Back to Top]