November  2012, 17(8): 2671-2689. doi: 10.3934/dcdsb.2012.17.2671

Steady states in hierarchical structured populations with distributed states at birth

1. 

Department of Computing Science and Mathematics, University of Stirling, Stirling, FK9 4LA, United Kingdom

2. 

Department of Mathematical Sciences, University of Wisconsin – Milwaukee, P.O. Box 413, Milwaukee, WI 53201-0413

Received  March 2011 Revised  August 2011 Published  July 2012

We investigate steady states of a quasilinear first order hyperbolic partial integro-differential equation. The model describes the evolution of a hierarchical structured population with distributed states at birth. Hierarchical size-structured models describe the dynamics of populations when individuals experience size-specific environment. This is the case for example in a population where individuals exhibit cannibalistic behavior and the chance to become prey (or to attack) depends on the individual's size. The other distinctive feature of the model is that individuals are recruited into the population at arbitrary size. This amounts to an infinite rank integral operator describing the recruitment process. First we establish conditions for the existence of a positive steady state of the model. Our method uses a fixed point result of nonlinear maps in conical shells of Banach spaces. Then we study stability properties of steady states for the special case of a separable growth rate using results from the theory of positive operators on Banach lattices.
Citation: József Z. Farkas, Peter Hinow. Steady states in hierarchical structured populations with distributed states at birth. Discrete and Continuous Dynamical Systems - B, 2012, 17 (8) : 2671-2689. doi: 10.3934/dcdsb.2012.17.2671
References:
[1]

A. S. Ackleh, K. Deng and S. Hu, A quasilinear hierarchical size-structured model: Well-posedness andapproximation, Appl. Math. Optim., 51 (2005), 35-59.

[2]

A. S. Ackleh and K. Ito, Measure-valued solutions for a hierarchically size-structured population, J. Differential Equations, 217 (2005), 431-455.

[3]

R. A. Adams and J. J. F. Fournier, "Sobolev Spaces," 2nd edition, Pure and Applied Mathematics (Amsterdam), 140, Elsevier/Academic Press, Amsterdam, 2003.

[4]

H. Amann, Fixed point equations and nonlinear eigenvalue problems in ordered Banach spaces, SIAM Rev., 18 (1976), 620-709.

[5]

W. Arendt, A. Grabosch, G. Greiner, U. Groh, H. P. Lotz, U. Moustakas, R. Nagel, F. Neubrander and U. Schlotterbeck, "One-Parameter Semigroups of Positive Operators," Lecture Notes in Mathematics, 1184, Springer-Verlag, Berlin, 1986.

[6]

À. Calsina and J. Saldań, Asymptotic behavior of a model ofhierarchically structured population dynamics, J. Math. Biol., 35 (1997), 967-987.

[7]

À. Calsina and J. Saldañ, Basic theory for a class of models ofhierarchically structured population dynamics with distributed states in the recruitment, Math. Models Methods Appl. Sci., 16 (2006), 1695-1722.

[8]

J. M. Cushing, The dynamics of hierarchical age-structured populations, J. Math. Biol., 32 (1994), 705-729.

[9]

J. M. Cushing, "An Introduction to Structured Population Dynamics," CBMS-NSF Regional Conference Series in Applied Mathematics, 71, SIAM, Philadelphia, PA, 1998.

[10]

K. Deimling, "Nonlinear Functional Analysis," Springer-Verlag, Berlin, 1985.

[11]

K.-J. Engel and R. Nagel, "One-Parameter Semigroups for Linear Evolution Equations," Graduate Texts in Mathematics, 194, Springer-Verlag, New York 2000.

[12]

J. Z. Farkas, D. M. Green and P. Hinow, Semigroup analysis ofstructured parasite populations, Math. Model. Nat. Phenom., 5 (2010), 94-114.

[13]

J. Z. Farkas and T. Hagen, Stability and regularity results for asize-structured population model, J. Math. Anal. Appl., 328 (2007), 119-136.

[14]

J. Z. Farkas and T. Hagen, Asymptotic analysis of a size-structured cannibalism model with infinite dimensional environmental feedback, Commun. Pure Appl. Anal., 8 (2009), 1825-1839.

[15]

J. Z. Farkas and T. Hagen, Hierarchical size-structured populations: The linearized semigroup approach, Dyn. Contin. Discrete Impuls. Syst. Ser. A Math. Anal., 17 (2010), 639-657.

[16]

J. Z. Farkas and P. Hinow, On a size-structured two-phase population model with infinite states-at-birth, Positivity, 14 (2010), 501-514.

[17]

A. Grabosch and H. J. A. M. Heijmans, Cauchy problems with state-dependent time evolution, Japan J. Appl. Math., 7 (1990), 433-457.

[18]

M. E. Gurtin and R. C. MacCamy, Non-linear age-dependent population dynamics, Arch. Rational Mech. Anal., 54 (1974), 281-300.

[19]

S. M. Henson and J. M. Cushing, Hierarchical models of intra-specific competition: Scramble versus contest, J. Math. Biol., 34 (1996), 755-772.

[20]

S. R.-J. Jang and J. M. Cushing, A discrete hierarchical model ofintra-specific competition, J. Math. Anal. Appl., 280 (2003), 102-122.

[21]

S. R.-J. Jang and J. M. Cushing, Dynamics of hierarchical models in discrete-time, J. Difference Equ. Appl., 11 (2005), 95-115.

[22]

N. Kato, A principle of linearized stability for nonlinear evolution equations, Trans. Amer. Math. Soc., 347 (1995), 2851-2868.

[23]

J. A. J. Metz and O. Diekmann, Age dependence, in "The Dynamics of Physiologically Structured Populations" (Amsterdam, 1983), Lecture Notes in Biomath., 68, Springer, Berlin, 1986.

[24]

J. Prüss, On the qualitative behavior of populations with age-specific interactions, Comput. Math. Appl., 9 (1983), 327-339.

[25]

S. L. Tucker and S. O. Zimmerman, A nonlinear model of population dynamics containing an arbitrary number of continuous structure variables, SIAM J. Appl. Math., 48 (1988), 549-591.

[26]

Ch. Walker, Global bifurcation of positive equilibria in nonlinear population models, J. Diff. Eq., 248 (2010), 1756-1776.

[27]

G. F. Webb, "Theory of Nonlinear Age-Dependent Population Dynamics," Monographs and Textbooks in Pure and Applied Mathematics, 89, Marcel Dekker, Inc., New York, 1985.

[28]

K. Yosida, "Functional Analysis," Reprint of the sixth (1980) edition, Classics in Mathematics, Springer-Verlag, Berlin, 1995.

show all references

References:
[1]

A. S. Ackleh, K. Deng and S. Hu, A quasilinear hierarchical size-structured model: Well-posedness andapproximation, Appl. Math. Optim., 51 (2005), 35-59.

[2]

A. S. Ackleh and K. Ito, Measure-valued solutions for a hierarchically size-structured population, J. Differential Equations, 217 (2005), 431-455.

[3]

R. A. Adams and J. J. F. Fournier, "Sobolev Spaces," 2nd edition, Pure and Applied Mathematics (Amsterdam), 140, Elsevier/Academic Press, Amsterdam, 2003.

[4]

H. Amann, Fixed point equations and nonlinear eigenvalue problems in ordered Banach spaces, SIAM Rev., 18 (1976), 620-709.

[5]

W. Arendt, A. Grabosch, G. Greiner, U. Groh, H. P. Lotz, U. Moustakas, R. Nagel, F. Neubrander and U. Schlotterbeck, "One-Parameter Semigroups of Positive Operators," Lecture Notes in Mathematics, 1184, Springer-Verlag, Berlin, 1986.

[6]

À. Calsina and J. Saldań, Asymptotic behavior of a model ofhierarchically structured population dynamics, J. Math. Biol., 35 (1997), 967-987.

[7]

À. Calsina and J. Saldañ, Basic theory for a class of models ofhierarchically structured population dynamics with distributed states in the recruitment, Math. Models Methods Appl. Sci., 16 (2006), 1695-1722.

[8]

J. M. Cushing, The dynamics of hierarchical age-structured populations, J. Math. Biol., 32 (1994), 705-729.

[9]

J. M. Cushing, "An Introduction to Structured Population Dynamics," CBMS-NSF Regional Conference Series in Applied Mathematics, 71, SIAM, Philadelphia, PA, 1998.

[10]

K. Deimling, "Nonlinear Functional Analysis," Springer-Verlag, Berlin, 1985.

[11]

K.-J. Engel and R. Nagel, "One-Parameter Semigroups for Linear Evolution Equations," Graduate Texts in Mathematics, 194, Springer-Verlag, New York 2000.

[12]

J. Z. Farkas, D. M. Green and P. Hinow, Semigroup analysis ofstructured parasite populations, Math. Model. Nat. Phenom., 5 (2010), 94-114.

[13]

J. Z. Farkas and T. Hagen, Stability and regularity results for asize-structured population model, J. Math. Anal. Appl., 328 (2007), 119-136.

[14]

J. Z. Farkas and T. Hagen, Asymptotic analysis of a size-structured cannibalism model with infinite dimensional environmental feedback, Commun. Pure Appl. Anal., 8 (2009), 1825-1839.

[15]

J. Z. Farkas and T. Hagen, Hierarchical size-structured populations: The linearized semigroup approach, Dyn. Contin. Discrete Impuls. Syst. Ser. A Math. Anal., 17 (2010), 639-657.

[16]

J. Z. Farkas and P. Hinow, On a size-structured two-phase population model with infinite states-at-birth, Positivity, 14 (2010), 501-514.

[17]

A. Grabosch and H. J. A. M. Heijmans, Cauchy problems with state-dependent time evolution, Japan J. Appl. Math., 7 (1990), 433-457.

[18]

M. E. Gurtin and R. C. MacCamy, Non-linear age-dependent population dynamics, Arch. Rational Mech. Anal., 54 (1974), 281-300.

[19]

S. M. Henson and J. M. Cushing, Hierarchical models of intra-specific competition: Scramble versus contest, J. Math. Biol., 34 (1996), 755-772.

[20]

S. R.-J. Jang and J. M. Cushing, A discrete hierarchical model ofintra-specific competition, J. Math. Anal. Appl., 280 (2003), 102-122.

[21]

S. R.-J. Jang and J. M. Cushing, Dynamics of hierarchical models in discrete-time, J. Difference Equ. Appl., 11 (2005), 95-115.

[22]

N. Kato, A principle of linearized stability for nonlinear evolution equations, Trans. Amer. Math. Soc., 347 (1995), 2851-2868.

[23]

J. A. J. Metz and O. Diekmann, Age dependence, in "The Dynamics of Physiologically Structured Populations" (Amsterdam, 1983), Lecture Notes in Biomath., 68, Springer, Berlin, 1986.

[24]

J. Prüss, On the qualitative behavior of populations with age-specific interactions, Comput. Math. Appl., 9 (1983), 327-339.

[25]

S. L. Tucker and S. O. Zimmerman, A nonlinear model of population dynamics containing an arbitrary number of continuous structure variables, SIAM J. Appl. Math., 48 (1988), 549-591.

[26]

Ch. Walker, Global bifurcation of positive equilibria in nonlinear population models, J. Diff. Eq., 248 (2010), 1756-1776.

[27]

G. F. Webb, "Theory of Nonlinear Age-Dependent Population Dynamics," Monographs and Textbooks in Pure and Applied Mathematics, 89, Marcel Dekker, Inc., New York, 1985.

[28]

K. Yosida, "Functional Analysis," Reprint of the sixth (1980) edition, Classics in Mathematics, Springer-Verlag, Berlin, 1995.

[1]

Àngel Calsina, József Z. Farkas. Boundary perturbations and steady states of structured populations. Discrete and Continuous Dynamical Systems - B, 2019, 24 (12) : 6675-6691. doi: 10.3934/dcdsb.2019162

[2]

Anton Arnold, Laurent Desvillettes, Céline Prévost. Existence of nontrivial steady states for populations structured with respect to space and a continuous trait. Communications on Pure and Applied Analysis, 2012, 11 (1) : 83-96. doi: 10.3934/cpaa.2012.11.83

[3]

Victoria Martín-Márquez, Simeon Reich, Shoham Sabach. Iterative methods for approximating fixed points of Bregman nonexpansive operators. Discrete and Continuous Dynamical Systems - S, 2013, 6 (4) : 1043-1063. doi: 10.3934/dcdss.2013.6.1043

[4]

Victoria Martín-Márquez, Simeon Reich, Shoham Sabach. Iterative methods for approximating fixed points of Bregman nonexpansive operators. Discrete and Continuous Dynamical Systems - S, 2013, 6 (4) : 1043-1063. doi: 10.3934/dcdss.2013.6.1043

[5]

Inom Mirzaev, David M. Bortz. A numerical framework for computing steady states of structured population models and their stability. Mathematical Biosciences & Engineering, 2017, 14 (4) : 933-952. doi: 10.3934/mbe.2017049

[6]

Wen Feng, Milena Stanislavova, Atanas Stefanov. On the spectral stability of ground states of semi-linear Schrödinger and Klein-Gordon equations with fractional dispersion. Communications on Pure and Applied Analysis, 2018, 17 (4) : 1371-1385. doi: 10.3934/cpaa.2018067

[7]

Bertrand Lods, Mustapha Mokhtar-Kharroubi, Mohammed Sbihi. Spectral properties of general advection operators and weighted translation semigroups. Communications on Pure and Applied Analysis, 2009, 8 (5) : 1469-1492. doi: 10.3934/cpaa.2009.8.1469

[8]

Damien Thomine. A spectral gap for transfer operators of piecewise expanding maps. Discrete and Continuous Dynamical Systems, 2011, 30 (3) : 917-944. doi: 10.3934/dcds.2011.30.917

[9]

Azmy S. Ackleh, H.T. Banks, Keng Deng, Shuhua Hu. Parameter Estimation in a Coupled System of Nonlinear Size-Structured Populations. Mathematical Biosciences & Engineering, 2005, 2 (2) : 289-315. doi: 10.3934/mbe.2005.2.289

[10]

Anna Cima, Armengol Gasull, Víctor Mañosa. Parrondo's dynamic paradox for the stability of non-hyperbolic fixed points. Discrete and Continuous Dynamical Systems, 2018, 38 (2) : 889-904. doi: 10.3934/dcds.2018038

[11]

Qian Xu. The stability of bifurcating steady states of several classes of chemotaxis systems. Discrete and Continuous Dynamical Systems - B, 2015, 20 (1) : 231-248. doi: 10.3934/dcdsb.2015.20.231

[12]

Yongli Cai, Yun Kang, Weiming Wang. Global stability of the steady states of an epidemic model incorporating intervention strategies. Mathematical Biosciences & Engineering, 2017, 14 (5&6) : 1071-1089. doi: 10.3934/mbe.2017056

[13]

Yan'e Wang, Jianhua Wu. Stability of positive constant steady states and their bifurcation in a biological depletion model. Discrete and Continuous Dynamical Systems - B, 2011, 15 (3) : 849-865. doi: 10.3934/dcdsb.2011.15.849

[14]

Paula Kemp. Fixed points and complete lattices. Conference Publications, 2007, 2007 (Special) : 568-572. doi: 10.3934/proc.2007.2007.568

[15]

John Franks, Michael Handel, Kamlesh Parwani. Fixed points of Abelian actions. Journal of Modern Dynamics, 2007, 1 (3) : 443-464. doi: 10.3934/jmd.2007.1.443

[16]

Gerhard Rein, Christopher Straub. On the transport operators arising from linearizing the Vlasov-Poisson or Einstein-Vlasov system about isotropic steady states. Kinetic and Related Models, 2020, 13 (5) : 933-949. doi: 10.3934/krm.2020032

[17]

Dieter Schmidt, Lucas Valeriano. Nonlinear stability of stationary points in the problem of Robe. Discrete and Continuous Dynamical Systems - B, 2016, 21 (6) : 1917-1936. doi: 10.3934/dcdsb.2016029

[18]

Mostafa Adimy, Fabien Crauste, Laurent Pujo-Menjouet. On the stability of a nonlinear maturity structured model of cellular proliferation. Discrete and Continuous Dynamical Systems, 2005, 12 (3) : 501-522. doi: 10.3934/dcds.2005.12.501

[19]

Anouar El Harrak, Amal Bergam, Tri Nguyen-Huu, Pierre Auger, Rachid Mchich. Application of aggregation of variables methods to a class of two-time reaction-diffusion-chemotaxis models of spatially structured populations with constant diffusion. Discrete and Continuous Dynamical Systems - S, 2021, 14 (7) : 2163-2181. doi: 10.3934/dcdss.2021055

[20]

Karl Peter Hadeler. Structured populations with diffusion in state space. Mathematical Biosciences & Engineering, 2010, 7 (1) : 37-49. doi: 10.3934/mbe.2010.7.37

2021 Impact Factor: 1.497

Metrics

  • PDF downloads (41)
  • HTML views (0)
  • Cited by (5)

Other articles
by authors

[Back to Top]