# American Institute of Mathematical Sciences

November  2012, 17(8): 2691-2712. doi: 10.3934/dcdsb.2012.17.2691

## A three dimensional model of wound healing: Analysis and computation

 1 Department of Mathematics and Mathematical Biosciences Institute, Ohio State University, Columbus, OH 43210, United States, United States 2 Department of Applied and Computational Mathematics and Statistics, University of Notre Dame, Notre Dame, IN 46556

Received  March 2011 Revised  May 2011 Published  July 2012

This paper is concerned with a three-dimensional model of wound healing. The boundary of the wound is a free boundary, and the region surrounding it is viewed as a partially healed tissue, satisfying a viscoelastic constitutive law for the velocity v. In the partially healed region the densities of several types of cells and the concentrations of several chemical species satisfy a coupled system of parabolic equations, whereas the tissue density satisfies a hyperbolic equation. The parabolic equations include advection by the velocity v and chemotaxis/haptotaxis terms. We prove existence and uniqueness of a smooth solution of the free boundary problem, for some time interval $0\leq t\leq T$, $T>0$. We also simulate the model equations to demonstrate the difference in the healing rate between normal wounds and chronic (or ischemic) wounds.
Citation: Avner Friedman, Bei Hu, Chuan Xue. A three dimensional model of wound healing: Analysis and computation. Discrete and Continuous Dynamical Systems - B, 2012, 17 (8) : 2691-2712. doi: 10.3934/dcdsb.2012.17.2691
##### References:
 [1] S. Agmon, A. Douglis and L. Nirenberg, Estimates near the boundary for solutions of elliptic partial differential equations satisfying general boundary conditions. II, Communications on Pure and Applied Mathematics, 17 (1964), 35-92. [2] A. R. A. Anderson and M. A. J. Chaplain, Continuous and discrete mathematical models of tumor-induced angiogenesis, Bull. Math. Biol., 60 (1998), 857-899. [3] H. M. Byrne, M. A. J. Chaplain, D. L. Evans and I. Hopkinson, Mathematical modelling of angiogenesis in wound healing: Comparison of theory and experiment, J. Theor. Med., 2 (2000), 175-197. [4] X. Chen and A. Friedman, A free boundary problem for an elliptic-hyperbolic system: An application to tumor growth, SIAM Journal on Mathematical Analysis, 35 (2003), 974-986. [5] R. F. Diegelmann and M. C. Evans, Wound healing: An overview of acute, fibrotic and delayed healing, Front. Biosci., 9 (2004), 283-289. [6] Y. Dor, V. Djonov and E. Keshet, Induction of vascular networks in adult organs: Implications to proangiogenic therapy, Annals of the New York Academy of Sciences, 995 (2003), 208-216. [7] Y. Dor, V. Djonov and E. Keshet, Making vascular networks in the adult: Branching morphogenesis without a roadmap, Trends in Cell Biology, 13 (2003), 131-136. [8] A. Friedman, A multiscale tumor model, Interfaces and Free Boundaries, 10 (2008), 245-262. [9] A. Friedman, B. Hu and C. Xue, Analysis of a mathematical model of ischemic cutaneous wounds, SIAM J. Math. Anal., 42 (2010), 2013-2040. [10] A. Friedman and G. Lolas, Analysis of a mathematical model of tumor lymphangiogenesis, Math. Models Methods Appl. Sci., 15 (2005), 95-107. [11] A. Friedman and C. Xue, A mathematical model for chronic wounds, Mathematical Biosciences and Engineering, 8 (2011), 253-261. [12] S. R. McDougall, A. R. A. Anderson, M. A. J. Chaplain and J. A. Sherratt, Mathematical modelling of flow through vascular networks: Implications for tumour-induced angiogenesis and chemotherapy strategies, Bull. Math. Biol., 64 (2002), 673-702. [13] N. B. Menke, K. R. Ward, T. M. Witten, D. G. Bonchev and R. F. Diegelmann, Impaired wound healing, Clinics in Dermatology, 25 (2007), 19-25. [14] G. Pettet, M. A. J. Chaplain, D. L. S. Mcelwain and H. M. Byrne, On the role of angiogenesis in wound healing, Proc. R. Soc. Lond. B, 263 (1996), 1487-1493. [15] G. J. Pettet, H. M. Byrne, D. L. S. Mcelwain and J. Norbury, A model of wound-healing angiogenesis in soft tissue, Mathematical Biosciences, 136 (1996), 35-63. [16] S. Roy, S. Biswas, S. Khanna, G. Gordillo, V. Bergdall, J. Green, C. B. Marsh, L. J. Gould and C. K. Sen, Characterization of a preclinical model of chronic ischemic wound, Physiological Genomics, 37 (2009), 211. [17] R. C. Schugart, A. Friedman, R. Zhao and C. K. Sen, Wound angiogenesis as a function of tissue oxygen tension: A mathematical model, PNAS, 105 (2008), 2628-2633. [18] C. K. Sen, G. M. Gordillo, S. R., R. Kirsner, L. Lambert, T. K Hunt, F. Gottrup, G. C. Gurtner and M. T. Longaker, Human skin wounds: A major and snowballing threat to public health and the economy, Wound Repair Regen., 17 (2009), 763-771. [19] A. J. Singer and R. A. Clark, Cutaneous wound healing, N. Engl. J. Med., 341 (1999), 738-746. [20] A. Stephanou, S. R. McDougall, A. R. A. Anderson and M. A. J. Chaplain, Mathematical modelling of flow in 2D and 3D vascular networks: Applications to anti-angiogenic and chemotherapeutic drug strategies, Mathematical and Computer Modelling, 41 (2005), 1137-1156. [21] F. Werdin, M. Tennenhaus, H. Schaller and H. Rennekampff, Evidence-based management strategies for treatment of chronic wounds, Eplasty, 9 (2009), e19. [22] C. Xue, A. Friedman and C. K. Sen, A mathematical model of ischemic cutaneous wounds, PNAS, 106 (2009), 16782-16787.

show all references

##### References:
 [1] S. Agmon, A. Douglis and L. Nirenberg, Estimates near the boundary for solutions of elliptic partial differential equations satisfying general boundary conditions. II, Communications on Pure and Applied Mathematics, 17 (1964), 35-92. [2] A. R. A. Anderson and M. A. J. Chaplain, Continuous and discrete mathematical models of tumor-induced angiogenesis, Bull. Math. Biol., 60 (1998), 857-899. [3] H. M. Byrne, M. A. J. Chaplain, D. L. Evans and I. Hopkinson, Mathematical modelling of angiogenesis in wound healing: Comparison of theory and experiment, J. Theor. Med., 2 (2000), 175-197. [4] X. Chen and A. Friedman, A free boundary problem for an elliptic-hyperbolic system: An application to tumor growth, SIAM Journal on Mathematical Analysis, 35 (2003), 974-986. [5] R. F. Diegelmann and M. C. Evans, Wound healing: An overview of acute, fibrotic and delayed healing, Front. Biosci., 9 (2004), 283-289. [6] Y. Dor, V. Djonov and E. Keshet, Induction of vascular networks in adult organs: Implications to proangiogenic therapy, Annals of the New York Academy of Sciences, 995 (2003), 208-216. [7] Y. Dor, V. Djonov and E. Keshet, Making vascular networks in the adult: Branching morphogenesis without a roadmap, Trends in Cell Biology, 13 (2003), 131-136. [8] A. Friedman, A multiscale tumor model, Interfaces and Free Boundaries, 10 (2008), 245-262. [9] A. Friedman, B. Hu and C. Xue, Analysis of a mathematical model of ischemic cutaneous wounds, SIAM J. Math. Anal., 42 (2010), 2013-2040. [10] A. Friedman and G. Lolas, Analysis of a mathematical model of tumor lymphangiogenesis, Math. Models Methods Appl. Sci., 15 (2005), 95-107. [11] A. Friedman and C. Xue, A mathematical model for chronic wounds, Mathematical Biosciences and Engineering, 8 (2011), 253-261. [12] S. R. McDougall, A. R. A. Anderson, M. A. J. Chaplain and J. A. Sherratt, Mathematical modelling of flow through vascular networks: Implications for tumour-induced angiogenesis and chemotherapy strategies, Bull. Math. Biol., 64 (2002), 673-702. [13] N. B. Menke, K. R. Ward, T. M. Witten, D. G. Bonchev and R. F. Diegelmann, Impaired wound healing, Clinics in Dermatology, 25 (2007), 19-25. [14] G. Pettet, M. A. J. Chaplain, D. L. S. Mcelwain and H. M. Byrne, On the role of angiogenesis in wound healing, Proc. R. Soc. Lond. B, 263 (1996), 1487-1493. [15] G. J. Pettet, H. M. Byrne, D. L. S. Mcelwain and J. Norbury, A model of wound-healing angiogenesis in soft tissue, Mathematical Biosciences, 136 (1996), 35-63. [16] S. Roy, S. Biswas, S. Khanna, G. Gordillo, V. Bergdall, J. Green, C. B. Marsh, L. J. Gould and C. K. Sen, Characterization of a preclinical model of chronic ischemic wound, Physiological Genomics, 37 (2009), 211. [17] R. C. Schugart, A. Friedman, R. Zhao and C. K. Sen, Wound angiogenesis as a function of tissue oxygen tension: A mathematical model, PNAS, 105 (2008), 2628-2633. [18] C. K. Sen, G. M. Gordillo, S. R., R. Kirsner, L. Lambert, T. K Hunt, F. Gottrup, G. C. Gurtner and M. T. Longaker, Human skin wounds: A major and snowballing threat to public health and the economy, Wound Repair Regen., 17 (2009), 763-771. [19] A. J. Singer and R. A. Clark, Cutaneous wound healing, N. Engl. J. Med., 341 (1999), 738-746. [20] A. Stephanou, S. R. McDougall, A. R. A. Anderson and M. A. J. Chaplain, Mathematical modelling of flow in 2D and 3D vascular networks: Applications to anti-angiogenic and chemotherapeutic drug strategies, Mathematical and Computer Modelling, 41 (2005), 1137-1156. [21] F. Werdin, M. Tennenhaus, H. Schaller and H. Rennekampff, Evidence-based management strategies for treatment of chronic wounds, Eplasty, 9 (2009), e19. [22] C. Xue, A. Friedman and C. K. Sen, A mathematical model of ischemic cutaneous wounds, PNAS, 106 (2009), 16782-16787.
 [1] Mingxin Wang. Existence and uniqueness of solutions of free boundary problems in heterogeneous environments. Discrete and Continuous Dynamical Systems - B, 2019, 24 (2) : 415-421. doi: 10.3934/dcdsb.2018179 [2] Mingxin Wang. Erratum: Existence and uniqueness of solutions of free boundary problems in heterogeneous environments. Discrete and Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021269 [3] Tong Yang, Fahuai Yi. Global existence and uniqueness for a hyperbolic system with free boundary. Discrete and Continuous Dynamical Systems, 2001, 7 (4) : 763-780. doi: 10.3934/dcds.2001.7.763 [4] Haiyan Wang, Shiliang Wu. Spatial dynamics for a model of epidermal wound healing. Mathematical Biosciences & Engineering, 2014, 11 (5) : 1215-1227. doi: 10.3934/mbe.2014.11.1215 [5] Sophia A. Maggelakis. Modeling the role of angiogenesis in epidermal wound healing. Discrete and Continuous Dynamical Systems - B, 2004, 4 (1) : 267-273. doi: 10.3934/dcdsb.2004.4.267 [6] Noriaki Yamazaki. Almost periodicity of solutions to free boundary problems. Conference Publications, 2001, 2001 (Special) : 386-397. doi: 10.3934/proc.2001.2001.386 [7] John A. Adam. Inside mathematical modeling: building models in the context of wound healing in bone. Discrete and Continuous Dynamical Systems - B, 2004, 4 (1) : 1-24. doi: 10.3934/dcdsb.2004.4.1 [8] Gabriele Bonanno, Pasquale Candito, Roberto Livrea, Nikolaos S. Papageorgiou. Existence, nonexistence and uniqueness of positive solutions for nonlinear eigenvalue problems. Communications on Pure and Applied Analysis, 2017, 16 (4) : 1169-1188. doi: 10.3934/cpaa.2017057 [9] M. Chuaqui, C. Cortázar, M. Elgueta, J. García-Melián. Uniqueness and boundary behavior of large solutions to elliptic problems with singular weights. Communications on Pure and Applied Analysis, 2004, 3 (4) : 653-662. doi: 10.3934/cpaa.2004.3.653 [10] Avner Friedman. Free boundary problems arising in biology. Discrete and Continuous Dynamical Systems - B, 2018, 23 (1) : 193-202. doi: 10.3934/dcdsb.2018013 [11] Daniel Franco, Donal O'Regan. Existence of solutions to second order problems with nonlinear boundary conditions. Conference Publications, 2003, 2003 (Special) : 273-280. doi: 10.3934/proc.2003.2003.273 [12] M.J. Lopez-Herrero. The existence of weak solutions for a general class of mixed boundary value problems. Conference Publications, 2011, 2011 (Special) : 1015-1024. doi: 10.3934/proc.2011.2011.1015 [13] R. Kannan, S. Seikkala. Existence of solutions to some Phi-Laplacian boundary value problems. Conference Publications, 2001, 2001 (Special) : 211-217. doi: 10.3934/proc.2001.2001.211 [14] Patricia Bauman, Daniel Phillips, Jinhae Park. Existence of solutions to boundary value problems for smectic liquid crystals. Discrete and Continuous Dynamical Systems - S, 2015, 8 (2) : 243-257. doi: 10.3934/dcdss.2015.8.243 [15] John R. Graef, Shapour Heidarkhani, Lingju Kong. Existence of nontrivial solutions to systems of multi-point boundary value problems. Conference Publications, 2013, 2013 (special) : 273-281. doi: 10.3934/proc.2013.2013.273 [16] Lingju Kong, Qingkai Kong. Existence of nodal solutions of multi-point boundary value problems. Conference Publications, 2009, 2009 (Special) : 457-465. doi: 10.3934/proc.2009.2009.457 [17] John R. Graef, Lingju Kong. Uniqueness and parameter dependence of positive solutions of third order boundary value problems with $p$-laplacian. Conference Publications, 2011, 2011 (Special) : 515-522. doi: 10.3934/proc.2011.2011.515 [18] G. Kamberov. Prescribing mean curvature: existence and uniqueness problems. Electronic Research Announcements, 1998, 4: 4-11. [19] J. R. L. Webb. Uniqueness of the principal eigenvalue in nonlocal boundary value problems. Discrete and Continuous Dynamical Systems - S, 2008, 1 (1) : 177-186. doi: 10.3934/dcdss.2008.1.177 [20] Avner Friedman. Free boundary problems for systems of Stokes equations. Discrete and Continuous Dynamical Systems - B, 2016, 21 (5) : 1455-1468. doi: 10.3934/dcdsb.2016006

2020 Impact Factor: 1.327