• Previous Article
    A periodic reaction-diffusion model with a quiescent stage
  • DCDS-B Home
  • This Issue
  • Next Article
    Shooting and numerical continuation methods for computing time-minimal and energy-minimal trajectories in the Earth-Moon system using low propulsion
January  2012, 17(1): 271-282. doi: 10.3934/dcdsb.2012.17.271

A simple regulatory circuit that can simultaneously generate excitability of two different mechanisms

1. 

School of Mathematics and Computational Science, Sun Yat-Sen University, Guangzhou 510275, China, China

2. 

Systems Engineering and Engineering Management, City University of Hong Kong, China

Received  April 2011 Revised  May 2011 Published  October 2011

Coupled positive and negative feedback loops occur in many cellular signaling systems. We show that a two-component circuit with this kind of network structure can simultaneously generate excitability of two different mechanisms that is similar to either integrator or resonator in neuroscience. Moreover, we find that there is an opposite tendency between switching frequencies in the two excitable mechanisms, and the duration and amplitude of the response spike are more resistant to noise in the integrate system than in the resonate system. In addition, we discuss, combining the Bacillis subtilis model organism, some possible biological implications of these differences.
Citation: Changhong Shi, Han-Xiong Li, Tianshou Zhou. A simple regulatory circuit that can simultaneously generate excitability of two different mechanisms. Discrete and Continuous Dynamical Systems - B, 2012, 17 (1) : 271-282. doi: 10.3934/dcdsb.2012.17.271
References:
[1]

U. Alon, M. G. Surette, N. Barkai and S. Leibler, Robustness in bacterial chemotaxis, Nature, 397 (1999), 168-171.

[2]

T. M. Yi, Y. Huang, M. I. Simon and J. Doyle, Robust perfect adaptation in bacterial chemotaxis through integral feedback control, Proc. Natl. Acad. Sci. USA., 97 (2000), 4649-4653.

[3]

N. T. Ingolia, Topology and robustness in the drosophila segment polarity network, PLoS Biol., 2 (2004), e123.

[4]

T. S. Gardner, C. R. Cantor and J. J. Collins, Construction of a genetic toggle switch in Escherichia coli, Nature, 403 (2000), 339-342.

[5]

V. Shahrezaei and P. S. Swain, Analytical distributions for stochastic gene expression, Proc. Natl. Acad. Sci. USA, 105 (2008), 17256-17261.

[6]

G. M. Suel, J. Garcia-Ojalvo, L. M. Liberman and M. B. Elowitz, An excitable gene regulatory circuit induces transient cellular differentiation, Nature, 440 (2006), 545-550.

[7]

G. M. Suel, R. P. Kulkaryni, J. Dworkin, J. Garcia-Ojalvo and M. B. Elowitz, Tunability and noise dependence in differentiation dynamics, Science, 315 (2007), 1716-1719.

[8]

T. Cagatay, M. Turcotte, M. B. Elowitz, J. Garcia-Ojalvo and G. M. Suel, Architecture-dependent noise discriminates functionally analogous differentiation circuits, Cell, 139 (2009), 512-522.

[9]

B. Lindner, J. Garcia-Ojalvo, A. Neiman and L. Schimansky-Geier, Effect of noise in excitable system, Phys. Rep, 392 (2004), 321-424.

[10]

J. W. Veening, W. K. Smits and O. P. Kuipers, Bistability, epigenetics, and bet-hedging in bacteria, Annu. Rev. Microbiol, 4 (2008), 259-271.

[11]

E. M. Izhikevich, Neural excitability, spiking, and bursting, Int. J. Bifurcation Chaos, Appl. Sci. Eng., 10 (2000), 1171-1266.

[12]

T. Kalmar, C. Lim, P. Hayward, S. Munoz-Descalzo, J. Nichols, J. Garcia-Ojalvo and A. M. Arias, Regulated fluctuations in Nanog expression mediate cell fate decisions in Embryonic stem cells, PLoS Biol, (2009), 7e1000149.

[13]

D. van Sinderen and G. Venema, comK acts as an autoregulatory control switch in the signal transduction route to competence in Bacillus subtilis, J. Bacteriol, 176 (1994), 5762-5770.

[14]

J. Rinzel and G. B. Ermentrout, Analysis of neural excitability and oscillations, in "Methods in Neuronal Modeling: From Synapses to Networks" (eds C. Koch and I. Segev), MIT Press, Cambridge, MA, (1989), 135-169.

[15]

E. Conrad, A. E. Mayo, A. J. Ninfa and D. B. Forger, Rate constants rather than biochemical mechanism determine behavior of genetic clocks, J. R. Soc. Interface, 5 (2008), S9-S15.

[16]

S. A. Oprisan and C. C. Canavier, The influence of limit cycle topology on the phase resetting curve, Neural Comput., 14 (2002), 1027-1057.

[17]

R. Guantes and J. F. Poyatos, Dynamical principles of two-component genetic oscillators, PLoS Comput. Biol., 2 (2006), e30.

[18]

H. Maamar, A. Raj and D. Dubnau, Noise in gene expression determines cell fate in Bacillus subtilis, Science, 317 (2007), 526-529.

[19]

D. Schultz, E. B. Jacob, J. N. Onuchic and P. G. Wolynes, Molecular level stochastic model for competence cycles in Bacillus subtilis, PNAS, 1004 (2007), 17582-17587.

[20]

M. Leisner, K. Stingl, E. Frey and B. Maier, Stochastic switching to competence, Curr. Opin. Microbiol, 11 (2008), 553-559.

[21]

M. Leiser, J. T. Kuhr, J. O. Radler, E. Frey and B. Maier, Kinetics of genetic switching into the state of bacterial competence, Biophys. J, 96 (2009), 1178-1188.

[22]

S. H. Dandach and M. Khammash, Analysis of stochastic strategies in bacterial competence: A master equation approach, PLoS Comput. Biol., 6 (2010), 6e1000985.

[23]

J. Tsang and A. van Oudenaarden, Exciting fluctuations: Monitoring competence induction dynamics at the single-cell level, Mol. Sys. Biol., (2006), msb4100064-E1.

[24]

M. A. Savageau, P. Coelho, R. A. Fasani, D. A. Tolla and A. Salvador, Phenotypes and tolerances in the design space of biochemical systems, Proc. Natl. Acad. Sci. USA, 106 (2009), 6435-6440.

[25]

J. J. Zhang, Z. J. Yuan, H. X. Li and T. S. Zhou, Architecture-dependent robustness and bistability in a class of genetic circuits, Biophys. J., 99 (2010), 1034-1042.

[26]

P. E. Kloeden and E. Platen, "Numerical Solution of Stochastic Differential Equations," Springer-Verlag, Berlin, 1992.

[27]

, http://indy.cs.concordia.ca/auto/., \url{http://indy.cs.concordia.ca/auto/}., (). 

[28]

N.Rosenfeld, J. W. Young, U. Alon, P. Swain and M. B. Elowitz, Genetic regulation at the single-cell level, Science, 307 (2005), 1962-1965.

show all references

References:
[1]

U. Alon, M. G. Surette, N. Barkai and S. Leibler, Robustness in bacterial chemotaxis, Nature, 397 (1999), 168-171.

[2]

T. M. Yi, Y. Huang, M. I. Simon and J. Doyle, Robust perfect adaptation in bacterial chemotaxis through integral feedback control, Proc. Natl. Acad. Sci. USA., 97 (2000), 4649-4653.

[3]

N. T. Ingolia, Topology and robustness in the drosophila segment polarity network, PLoS Biol., 2 (2004), e123.

[4]

T. S. Gardner, C. R. Cantor and J. J. Collins, Construction of a genetic toggle switch in Escherichia coli, Nature, 403 (2000), 339-342.

[5]

V. Shahrezaei and P. S. Swain, Analytical distributions for stochastic gene expression, Proc. Natl. Acad. Sci. USA, 105 (2008), 17256-17261.

[6]

G. M. Suel, J. Garcia-Ojalvo, L. M. Liberman and M. B. Elowitz, An excitable gene regulatory circuit induces transient cellular differentiation, Nature, 440 (2006), 545-550.

[7]

G. M. Suel, R. P. Kulkaryni, J. Dworkin, J. Garcia-Ojalvo and M. B. Elowitz, Tunability and noise dependence in differentiation dynamics, Science, 315 (2007), 1716-1719.

[8]

T. Cagatay, M. Turcotte, M. B. Elowitz, J. Garcia-Ojalvo and G. M. Suel, Architecture-dependent noise discriminates functionally analogous differentiation circuits, Cell, 139 (2009), 512-522.

[9]

B. Lindner, J. Garcia-Ojalvo, A. Neiman and L. Schimansky-Geier, Effect of noise in excitable system, Phys. Rep, 392 (2004), 321-424.

[10]

J. W. Veening, W. K. Smits and O. P. Kuipers, Bistability, epigenetics, and bet-hedging in bacteria, Annu. Rev. Microbiol, 4 (2008), 259-271.

[11]

E. M. Izhikevich, Neural excitability, spiking, and bursting, Int. J. Bifurcation Chaos, Appl. Sci. Eng., 10 (2000), 1171-1266.

[12]

T. Kalmar, C. Lim, P. Hayward, S. Munoz-Descalzo, J. Nichols, J. Garcia-Ojalvo and A. M. Arias, Regulated fluctuations in Nanog expression mediate cell fate decisions in Embryonic stem cells, PLoS Biol, (2009), 7e1000149.

[13]

D. van Sinderen and G. Venema, comK acts as an autoregulatory control switch in the signal transduction route to competence in Bacillus subtilis, J. Bacteriol, 176 (1994), 5762-5770.

[14]

J. Rinzel and G. B. Ermentrout, Analysis of neural excitability and oscillations, in "Methods in Neuronal Modeling: From Synapses to Networks" (eds C. Koch and I. Segev), MIT Press, Cambridge, MA, (1989), 135-169.

[15]

E. Conrad, A. E. Mayo, A. J. Ninfa and D. B. Forger, Rate constants rather than biochemical mechanism determine behavior of genetic clocks, J. R. Soc. Interface, 5 (2008), S9-S15.

[16]

S. A. Oprisan and C. C. Canavier, The influence of limit cycle topology on the phase resetting curve, Neural Comput., 14 (2002), 1027-1057.

[17]

R. Guantes and J. F. Poyatos, Dynamical principles of two-component genetic oscillators, PLoS Comput. Biol., 2 (2006), e30.

[18]

H. Maamar, A. Raj and D. Dubnau, Noise in gene expression determines cell fate in Bacillus subtilis, Science, 317 (2007), 526-529.

[19]

D. Schultz, E. B. Jacob, J. N. Onuchic and P. G. Wolynes, Molecular level stochastic model for competence cycles in Bacillus subtilis, PNAS, 1004 (2007), 17582-17587.

[20]

M. Leisner, K. Stingl, E. Frey and B. Maier, Stochastic switching to competence, Curr. Opin. Microbiol, 11 (2008), 553-559.

[21]

M. Leiser, J. T. Kuhr, J. O. Radler, E. Frey and B. Maier, Kinetics of genetic switching into the state of bacterial competence, Biophys. J, 96 (2009), 1178-1188.

[22]

S. H. Dandach and M. Khammash, Analysis of stochastic strategies in bacterial competence: A master equation approach, PLoS Comput. Biol., 6 (2010), 6e1000985.

[23]

J. Tsang and A. van Oudenaarden, Exciting fluctuations: Monitoring competence induction dynamics at the single-cell level, Mol. Sys. Biol., (2006), msb4100064-E1.

[24]

M. A. Savageau, P. Coelho, R. A. Fasani, D. A. Tolla and A. Salvador, Phenotypes and tolerances in the design space of biochemical systems, Proc. Natl. Acad. Sci. USA, 106 (2009), 6435-6440.

[25]

J. J. Zhang, Z. J. Yuan, H. X. Li and T. S. Zhou, Architecture-dependent robustness and bistability in a class of genetic circuits, Biophys. J., 99 (2010), 1034-1042.

[26]

P. E. Kloeden and E. Platen, "Numerical Solution of Stochastic Differential Equations," Springer-Verlag, Berlin, 1992.

[27]

, http://indy.cs.concordia.ca/auto/., \url{http://indy.cs.concordia.ca/auto/}., (). 

[28]

N.Rosenfeld, J. W. Young, U. Alon, P. Swain and M. B. Elowitz, Genetic regulation at the single-cell level, Science, 307 (2005), 1962-1965.

[1]

Rui Dilão, András Volford. Excitability in a model with a saddle-node homoclinic bifurcation. Discrete and Continuous Dynamical Systems - B, 2004, 4 (2) : 419-434. doi: 10.3934/dcdsb.2004.4.419

[2]

Xiangying Meng, Gemma Huguet, John Rinzel. Type III excitability, slope sensitivity and coincidence detection. Discrete and Continuous Dynamical Systems, 2012, 32 (8) : 2729-2757. doi: 10.3934/dcds.2012.32.2729

[3]

Emmanuel Frénod, Sever A. Hirstoaga, Eric Sonnendrücker. An exponential integrator for a highly oscillatory vlasov equation. Discrete and Continuous Dynamical Systems - S, 2015, 8 (1) : 169-183. doi: 10.3934/dcdss.2015.8.169

[4]

Jinglai Qiao, Li Yang, Jiawei Yao. Passive control for a class of Nonlinear systems by using the technique of Adding a power integrator. Numerical Algebra, Control and Optimization, 2020, 10 (3) : 381-389. doi: 10.3934/naco.2020009

[5]

Adrian Viorel, Cristian D. Alecsa, Titus O. Pinţa. Asymptotic analysis of a structure-preserving integrator for damped Hamiltonian systems. Discrete and Continuous Dynamical Systems, 2021, 41 (7) : 3319-3341. doi: 10.3934/dcds.2020407

[6]

Mei Luo, Jinrong Wang, Yumei Liao. Bounded consensus of double-integrator stochastic multi-agent systems. Discrete and Continuous Dynamical Systems - S, 2022  doi: 10.3934/dcdss.2022088

[7]

Lixia Duan, Dehong Zhai, Qishao Lu. Bifurcation and bursting in Morris-Lecar model for class I and class II excitability. Conference Publications, 2011, 2011 (Special) : 391-399. doi: 10.3934/proc.2011.2011.391

[8]

Achilleas Koutsou, Jacob Kanev, Maria Economidou, Chris Christodoulou. Integrator or coincidence detector --- what shapes the relation of stimulus synchrony and the operational mode of a neuron?. Mathematical Biosciences & Engineering, 2016, 13 (3) : 521-535. doi: 10.3934/mbe.2016005

[9]

Antoine Tambue, Jean Daniel Mukam. Magnus-type integrator for non-autonomous SPDEs driven by multiplicative noise. Discrete and Continuous Dynamical Systems, 2020, 40 (8) : 4597-4624. doi: 10.3934/dcds.2020194

[10]

Gengen Zhang. Time splitting combined with exponential wave integrator Fourier pseudospectral method for quantum Zakharov system. Discrete and Continuous Dynamical Systems - B, 2022, 27 (5) : 2587-2606. doi: 10.3934/dcdsb.2021149

[11]

Thomas I. Seidman, Houshi Li. A note on stabilization with saturating feedback. Discrete and Continuous Dynamical Systems, 2001, 7 (2) : 319-328. doi: 10.3934/dcds.2001.7.319

[12]

F. H. Clarke, Yu. S . Ledyaev, R. J. Stern. Proximal techniques of feedback construction. Conference Publications, 1998, 1998 (Special) : 177-194. doi: 10.3934/proc.1998.1998.177

[13]

Canghua Jiang, Zhiqiang Guo, Xin Li, Hai Wang, Ming Yu. An efficient adjoint computational method based on lifted IRK integrator and exact penalty function for optimal control problems involving continuous inequality constraints. Discrete and Continuous Dynamical Systems - S, 2020, 13 (6) : 1845-1865. doi: 10.3934/dcdss.2020109

[14]

Guoliang Zhang, Shaoqin Zheng, Tao Xiong. A conservative semi-Lagrangian finite difference WENO scheme based on exponential integrator for one-dimensional scalar nonlinear hyperbolic equations. Electronic Research Archive, 2021, 29 (1) : 1819-1839. doi: 10.3934/era.2020093

[15]

Muhammad I. Mustafa. Viscoelastic plate equation with boundary feedback. Evolution Equations and Control Theory, 2017, 6 (2) : 261-276. doi: 10.3934/eect.2017014

[16]

Fabio S. Priuli. State constrained patchy feedback stabilization. Mathematical Control and Related Fields, 2015, 5 (1) : 141-163. doi: 10.3934/mcrf.2015.5.141

[17]

Gonzalo Robledo. Feedback stabilization for a chemostat with delayed output. Mathematical Biosciences & Engineering, 2009, 6 (3) : 629-647. doi: 10.3934/mbe.2009.6.629

[18]

Ambroise Vest. On the structural properties of an efficient feedback law. Evolution Equations and Control Theory, 2013, 2 (3) : 543-556. doi: 10.3934/eect.2013.2.543

[19]

Maria Conceição A. Leite, Yunjiao Wang. Multistability, oscillations and bifurcations in feedback loops. Mathematical Biosciences & Engineering, 2010, 7 (1) : 83-97. doi: 10.3934/mbe.2010.7.83

[20]

David Iron, Adeela Syed, Heidi Theisen, Tamas Lukacsovich, Mehrangiz Naghibi, Lawrence J. Marsh, Frederic Y. M. Wan, Qing Nie. The role of feedback in the formation of morphogen territories. Mathematical Biosciences & Engineering, 2008, 5 (2) : 277-298. doi: 10.3934/mbe.2008.5.277

2020 Impact Factor: 1.327

Metrics

  • PDF downloads (78)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]