- Previous Article
- DCDS-B Home
- This Issue
-
Next Article
Avian influenza dynamics in wild birds with bird mobility and spatial heterogeneous environment
Wavefront of an angiogenesis model
1. | Department of Applied Mathematics, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China |
References:
[1] |
A. R. A. Anderson and M. A. J. Chaplain, Modelling the growth and form of capillary networks, in "On Growth and Form: Spatio-Temporal Pattern Formation in Biology" (eds. J. C. McLachlan M. A. J. Chaplain and G. G. Singh), Wiley, (1999), 225-249. |
[2] |
N. Bellomo and L. Preziosi, Modelling and mathematical problems related to tumor evolution and its interaction with the immune system, Math. Comput. Modelling, 32 (2000), 413-452. |
[3] |
H. Byren and M. A. J. Chaplain, Mathematical models for tumour angiogenesis-numerical simulations and nonlinear-wave equations, Bull. Math. Biol., 57 (1995), 461-485. |
[4] |
M. A. J. Chaplain and G. Lolas, Mathematical modelling of cancer invasion of tissue: Dynamic heterogeneity, Net. Hetero. Med., 1 (2006), 399-439. |
[5] |
M. A. J. Chaplain and A. M. Stuart, A model mechanism for the chemotactic response of endothelial cells to tumor angiogenesis factor, IMA J. Math. Appl. Med., 10 (1993), 149-168. |
[6] |
L. Corrias, B. Perthame and H. Zaag, A chemotaxis model motivated by angiogenesis, C. R. Acad. Sci. Paris. Ser. I., 336 (2003), 141-146. |
[7] |
L. Corrias, B. Perthame and H. Zaag, Global solutions of some chemotaxis and angiogenesis system in high space dimensions, Milan J. Math., 72 (2004), 1-28. |
[8] |
M. A. Fontelos, A. Friedman and B. Hu, Mathematical analysis of a model for the initiation of angiogenesis, SIAM. J. Math. Anal., 33 (2002), 1330-1355. |
[9] |
A. Friedman and J. I. Tello, Stability of solutions of chemotaxis equations in reinforced random walks, J. Math. Anal. Appl., 272 (2002), 138-163. |
[10] |
E. F. Keller and L. A. Segel, Traveling bands of chemotactic bacteria: A theorectical analysis, J. Theor. Biol., 26 (1971), 235-248. |
[11] |
J. A. Leach and D. J. Needham, "Matched Asymptotic Expansions in Reaction-Diffusion Theory," Springer Monographs in Mathematics, Springer-Verlag London, Ltd., London, 2004. |
[12] |
H. A. Levine, B. D. Sleeman and M. Nilsen-Hamilton, A mathematical model for the roles of pericytes and macrophages in the initiation of angiogenesis. I. The role of protease inhibitors in preventing angiogenesis, Math. Biosci., 168 (2000), 77-115. |
[13] |
D. Li, T. Li and K. Zhao, On a hyperbolic-parabolic system modeling chemotaxis, Math. Models Methods Appl. Sci., 21 (2011), 1631-1650.
doi: 10.1142/S0218202511005519. |
[14] |
T. Li, R. H. Pan and K. Zhao, Global dynamics of a chemotaxis model on bounded domains with large data, preprint, 2011. |
[15] |
T. Li and Z. A. Wang, Nonlinear stability of traveling waves to a hyperbolic-parabolic system modeling chemotaxis,, SIAM. J. Appl. Math., 70 (): 1522.
|
[16] |
T. Li and Z. A. Wang., Nonlinear stability of large amplitude viscous shock waves of a hyperbolic-parabolic system arising in chemotaxis, Math. Models Methods Appl. Sci., 20 (2010), 1967-1998. |
[17] |
T. Li and Z. A. Wang, Asymptotic nonlinear stability of traveling waves to conservation laws arising from chemotaxis, J. Differential Equations, 250 (2011), 1310-1333. |
[18] |
T. Li and K. Zhao, Quantitative decay of a hybrid type chemotaxis model with large data, preprint, 2011. |
[19] |
Y. Li, The existence of traveling waves in a biological model for chemotaxis, Acta Mathematicae Applicatae Sinica (in Chinese), 27 (2004), 123-131. |
[20] |
R. Lui and Z. A. Wang, Traveling wave solutions from microscopic to macroscopic chemotaxis models, J. Math. Biol., 61 (2010), 739-761. |
[21] |
B. P. Marchant, J. Norbury and J. A. Sherratt, Traveling wave solutions to a haptotaxis-dominated model of malignant invasion, Nonlinearity, 14 (2001), 1653-1671. |
[22] |
J. D. Murray, "Mathematical Biology. I. An Introduction," Third edition, Interdisciplinary Applied Mathematics, 17, Springer-Verlag, New York, 2002. |
[23] |
T. Nagai and T. Ikeda, Traveling waves in a chemotaxis model, J. Math. Biol., 30 (1991), 169-184. |
[24] |
A. Novick-Cohen and L. A. Segel, A gradually slowing traveling band of chemotactic bacteria, J. Math. Biol., 19 (1984), 125-132. |
[25] |
G. M. Odell and E. F. Keller, Traveling bands of chemotactic bacteria revisited, J. Theor. Biol., 56 (1976), 243-247. |
[26] |
B. Perthame, PDE models for chemotactic movement: Parabolic, hyperbolic and kinetic, Applications of Mathematics, 49 (2004), 539-564. |
[27] |
G. Rosen, On the propogation theory for bands of chemotactic bacteria, Math. Biosci., 20 (1974), 185-189. |
[28] |
G. Rosen, Existence and nature of band solutions to generic chemotactic transport equations, J. Theor. Biol., 59 (1976), 243-246. |
[29] |
H. Schwetlick, Traveling waves for chemotaxis systems, Proc. Appl. Math. Mech., 3 (2003), 476-478. |
[30] |
Z. A. Wang and T. Hillen, Shock formation in a chemotaxis model, Math. Methods. Appl. Sci., 31 (2008), 45-70. |
[31] |
J. Xin, Front propagation in heterogeneous media, SIAM Review, 42 (2000), 161-230. |
show all references
References:
[1] |
A. R. A. Anderson and M. A. J. Chaplain, Modelling the growth and form of capillary networks, in "On Growth and Form: Spatio-Temporal Pattern Formation in Biology" (eds. J. C. McLachlan M. A. J. Chaplain and G. G. Singh), Wiley, (1999), 225-249. |
[2] |
N. Bellomo and L. Preziosi, Modelling and mathematical problems related to tumor evolution and its interaction with the immune system, Math. Comput. Modelling, 32 (2000), 413-452. |
[3] |
H. Byren and M. A. J. Chaplain, Mathematical models for tumour angiogenesis-numerical simulations and nonlinear-wave equations, Bull. Math. Biol., 57 (1995), 461-485. |
[4] |
M. A. J. Chaplain and G. Lolas, Mathematical modelling of cancer invasion of tissue: Dynamic heterogeneity, Net. Hetero. Med., 1 (2006), 399-439. |
[5] |
M. A. J. Chaplain and A. M. Stuart, A model mechanism for the chemotactic response of endothelial cells to tumor angiogenesis factor, IMA J. Math. Appl. Med., 10 (1993), 149-168. |
[6] |
L. Corrias, B. Perthame and H. Zaag, A chemotaxis model motivated by angiogenesis, C. R. Acad. Sci. Paris. Ser. I., 336 (2003), 141-146. |
[7] |
L. Corrias, B. Perthame and H. Zaag, Global solutions of some chemotaxis and angiogenesis system in high space dimensions, Milan J. Math., 72 (2004), 1-28. |
[8] |
M. A. Fontelos, A. Friedman and B. Hu, Mathematical analysis of a model for the initiation of angiogenesis, SIAM. J. Math. Anal., 33 (2002), 1330-1355. |
[9] |
A. Friedman and J. I. Tello, Stability of solutions of chemotaxis equations in reinforced random walks, J. Math. Anal. Appl., 272 (2002), 138-163. |
[10] |
E. F. Keller and L. A. Segel, Traveling bands of chemotactic bacteria: A theorectical analysis, J. Theor. Biol., 26 (1971), 235-248. |
[11] |
J. A. Leach and D. J. Needham, "Matched Asymptotic Expansions in Reaction-Diffusion Theory," Springer Monographs in Mathematics, Springer-Verlag London, Ltd., London, 2004. |
[12] |
H. A. Levine, B. D. Sleeman and M. Nilsen-Hamilton, A mathematical model for the roles of pericytes and macrophages in the initiation of angiogenesis. I. The role of protease inhibitors in preventing angiogenesis, Math. Biosci., 168 (2000), 77-115. |
[13] |
D. Li, T. Li and K. Zhao, On a hyperbolic-parabolic system modeling chemotaxis, Math. Models Methods Appl. Sci., 21 (2011), 1631-1650.
doi: 10.1142/S0218202511005519. |
[14] |
T. Li, R. H. Pan and K. Zhao, Global dynamics of a chemotaxis model on bounded domains with large data, preprint, 2011. |
[15] |
T. Li and Z. A. Wang, Nonlinear stability of traveling waves to a hyperbolic-parabolic system modeling chemotaxis,, SIAM. J. Appl. Math., 70 (): 1522.
|
[16] |
T. Li and Z. A. Wang., Nonlinear stability of large amplitude viscous shock waves of a hyperbolic-parabolic system arising in chemotaxis, Math. Models Methods Appl. Sci., 20 (2010), 1967-1998. |
[17] |
T. Li and Z. A. Wang, Asymptotic nonlinear stability of traveling waves to conservation laws arising from chemotaxis, J. Differential Equations, 250 (2011), 1310-1333. |
[18] |
T. Li and K. Zhao, Quantitative decay of a hybrid type chemotaxis model with large data, preprint, 2011. |
[19] |
Y. Li, The existence of traveling waves in a biological model for chemotaxis, Acta Mathematicae Applicatae Sinica (in Chinese), 27 (2004), 123-131. |
[20] |
R. Lui and Z. A. Wang, Traveling wave solutions from microscopic to macroscopic chemotaxis models, J. Math. Biol., 61 (2010), 739-761. |
[21] |
B. P. Marchant, J. Norbury and J. A. Sherratt, Traveling wave solutions to a haptotaxis-dominated model of malignant invasion, Nonlinearity, 14 (2001), 1653-1671. |
[22] |
J. D. Murray, "Mathematical Biology. I. An Introduction," Third edition, Interdisciplinary Applied Mathematics, 17, Springer-Verlag, New York, 2002. |
[23] |
T. Nagai and T. Ikeda, Traveling waves in a chemotaxis model, J. Math. Biol., 30 (1991), 169-184. |
[24] |
A. Novick-Cohen and L. A. Segel, A gradually slowing traveling band of chemotactic bacteria, J. Math. Biol., 19 (1984), 125-132. |
[25] |
G. M. Odell and E. F. Keller, Traveling bands of chemotactic bacteria revisited, J. Theor. Biol., 56 (1976), 243-247. |
[26] |
B. Perthame, PDE models for chemotactic movement: Parabolic, hyperbolic and kinetic, Applications of Mathematics, 49 (2004), 539-564. |
[27] |
G. Rosen, On the propogation theory for bands of chemotactic bacteria, Math. Biosci., 20 (1974), 185-189. |
[28] |
G. Rosen, Existence and nature of band solutions to generic chemotactic transport equations, J. Theor. Biol., 59 (1976), 243-246. |
[29] |
H. Schwetlick, Traveling waves for chemotaxis systems, Proc. Appl. Math. Mech., 3 (2003), 476-478. |
[30] |
Z. A. Wang and T. Hillen, Shock formation in a chemotaxis model, Math. Methods. Appl. Sci., 31 (2008), 45-70. |
[31] |
J. Xin, Front propagation in heterogeneous media, SIAM Review, 42 (2000), 161-230. |
[1] |
Aiyong Chen, Chi Zhang, Wentao Huang. Limit speed of traveling wave solutions for the perturbed generalized KdV equation. Discrete and Continuous Dynamical Systems - S, 2022 doi: 10.3934/dcdss.2022048 |
[2] |
Gregoire Nadin. How does the spreading speed associated with the Fisher-KPP equation depend on random stationary diffusion and reaction terms?. Discrete and Continuous Dynamical Systems - B, 2015, 20 (6) : 1785-1803. doi: 10.3934/dcdsb.2015.20.1785 |
[3] |
Zhaosheng Feng. Traveling waves to a reaction-diffusion equation. Conference Publications, 2007, 2007 (Special) : 382-390. doi: 10.3934/proc.2007.2007.382 |
[4] |
Zhenguo Bai, Tingting Zhao. Spreading speed and traveling waves for a non-local delayed reaction-diffusion system without quasi-monotonicity. Discrete and Continuous Dynamical Systems - B, 2018, 23 (10) : 4063-4085. doi: 10.3934/dcdsb.2018126 |
[5] |
Jong-Shenq Guo, Ken-Ichi Nakamura, Toshiko Ogiwara, Chang-Hong Wu. The sign of traveling wave speed in bistable dynamics. Discrete and Continuous Dynamical Systems, 2020, 40 (6) : 3451-3466. doi: 10.3934/dcds.2020047 |
[6] |
Zhenzhen Wang, Tianshou Zhou. Asymptotic behaviors and stochastic traveling waves in stochastic Fisher-KPP equations. Discrete and Continuous Dynamical Systems - B, 2021, 26 (9) : 5023-5045. doi: 10.3934/dcdsb.2020323 |
[7] |
Xiaojie Hou, Yi Li, Kenneth R. Meyer. Traveling wave solutions for a reaction diffusion equation with double degenerate nonlinearities. Discrete and Continuous Dynamical Systems, 2010, 26 (1) : 265-290. doi: 10.3934/dcds.2010.26.265 |
[8] |
Tong Li, Jeungeun Park. Traveling waves in a chemotaxis model with logistic growth. Discrete and Continuous Dynamical Systems - B, 2019, 24 (12) : 6465-6480. doi: 10.3934/dcdsb.2019147 |
[9] |
Zhi-An Wang. Mathematics of traveling waves in chemotaxis --Review paper--. Discrete and Continuous Dynamical Systems - B, 2013, 18 (3) : 601-641. doi: 10.3934/dcdsb.2013.18.601 |
[10] |
Dashun Xu, Xiao-Qiang Zhao. Asymptotic speed of spread and traveling waves for a nonlocal epidemic model. Discrete and Continuous Dynamical Systems - B, 2005, 5 (4) : 1043-1056. doi: 10.3934/dcdsb.2005.5.1043 |
[11] |
Ronald Mickens, Kale Oyedeji. Traveling wave solutions to modified Burgers and diffusionless Fisher PDE's. Evolution Equations and Control Theory, 2019, 8 (1) : 139-147. doi: 10.3934/eect.2019008 |
[12] |
H.J. Hwang, K. Kang, A. Stevens. Drift-diffusion limits of kinetic models for chemotaxis: A generalization. Discrete and Continuous Dynamical Systems - B, 2005, 5 (2) : 319-334. doi: 10.3934/dcdsb.2005.5.319 |
[13] |
Shangbing Ai, Wenzhang Huang, Zhi-An Wang. Reaction, diffusion and chemotaxis in wave propagation. Discrete and Continuous Dynamical Systems - B, 2015, 20 (1) : 1-21. doi: 10.3934/dcdsb.2015.20.1 |
[14] |
Lina Wang, Xueli Bai, Yang Cao. Exponential stability of the traveling fronts for a viscous Fisher-KPP equation. Discrete and Continuous Dynamical Systems - B, 2014, 19 (3) : 801-815. doi: 10.3934/dcdsb.2014.19.801 |
[15] |
Manjun Ma, Xiao-Qiang Zhao. Monostable waves and spreading speed for a reaction-diffusion model with seasonal succession. Discrete and Continuous Dynamical Systems - B, 2016, 21 (2) : 591-606. doi: 10.3934/dcdsb.2016.21.591 |
[16] |
Xianbo Sun, Pei Yu. Periodic traveling waves in a generalized BBM equation with weak backward diffusion and dissipation terms. Discrete and Continuous Dynamical Systems - B, 2019, 24 (2) : 965-987. doi: 10.3934/dcdsb.2018341 |
[17] |
Tai-Chia Lin, Zhi-An Wang. Development of traveling waves in an interacting two-species chemotaxis model. Discrete and Continuous Dynamical Systems, 2014, 34 (7) : 2907-2927. doi: 10.3934/dcds.2014.34.2907 |
[18] |
Xiaojie Hou, Wei Feng. Traveling waves and their stability in a coupled reaction diffusion system. Communications on Pure and Applied Analysis, 2011, 10 (1) : 141-160. doi: 10.3934/cpaa.2011.10.141 |
[19] |
Linghai Zhang. Wave speed analysis of traveling wave fronts in delayed synaptically coupled neuronal networks. Discrete and Continuous Dynamical Systems, 2014, 34 (5) : 2405-2450. doi: 10.3934/dcds.2014.34.2405 |
[20] |
Jong-Shenq Guo, Ying-Chih Lin. The sign of the wave speed for the Lotka-Volterra competition-diffusion system. Communications on Pure and Applied Analysis, 2013, 12 (5) : 2083-2090. doi: 10.3934/cpaa.2013.12.2083 |
2020 Impact Factor: 1.327
Tools
Metrics
Other articles
by authors
[Back to Top]