Advanced Search
Article Contents
Article Contents

A passivity-based stability criterion for reaction diffusion systems with interconnected structure

Abstract Related Papers Cited by
  • In this paper, stability of a class of reaction diffusion systems is studied. Conditions on global asymptotic stability of the homogeneous equilibrium are derived based on the diagonal stability of a dissipativity matrix. This work extends previous result on global asymptotic stability from cyclic systems to general systems with interconnected structure. In addition, it reformulates the approach using an "input-output" formalism that makes the results easier to understand and apply. A biological example from the Mitogen-Activated Protein Kinase (MAPK) system is provided at the end to illustrate the new approach and the main result.
    Mathematics Subject Classification: 35K57, 93D20, 93D30.


    \begin{equation} \\ \end{equation}
  • [1]

    S. Abdelmalek and S. Kouachi, Proof of existence of global solutions for m-component reaction-diffusion systems with mixed boundary conditions via the Lyapunov functional method, J. Phys. A, 40 (2007), 12335-12350.doi: 10.1088/1751-8113/40/41/005.


    M. Arcak and E. D. Sontag, A passivity-based stability criterion for a class of biochemical reaction networks, Mathematical Biosciences and Engineering, 5 (2008), 1-19.doi: 10.3934/mbe.2008.5.1.


    L. Edelstein-Keshet, "Mathematical Models in Biology," Reprint of the 1988 original, Classics in Applied Mathematics, 46, SIAM, Philadelphia, PA, 2005.


    W. B. Fitzgibbon, S. L. Hollis and J. J. Morgan, Stability and Lyapunov functions for reaction-diffusion systems, SIAM J. Math. Anal., 28 (1997), 595-610.doi: 10.1137/S0036141094272241.


    D. Henry, "Geometric Theory of Semilinear Parabolic Equations," Lecture Nones in Mathematics, 840, Springer-Verlag, Berlin-New York, 1981.


    M. R. Jovanović, M. Arcak and E. D. SontagA passivity-based approach to stability of spatially distributed systems with a cyclic interconnection structure, IEEE Transactions on Circuits and Systems I. Regul. Pap., Special Issue on Systems Biology, 2008, 75-86.


    B. N. Kholodenko, Cell-signalling dynamics in time and space, Nat. Rev. Mol. Cell. Biol., 7 (2006), 165-176.doi: 10.1038/nrm1838.


    Y. Lou, T. Nagylaki and W.-M. Ni, On diffusion-induced blowups in a mutualistic model, Nonlinear Analysis, 45 (2001), 329-342.doi: 10.1016/S0362-546X(99)00346-6.


    S. Malham and J. Xin, Global solutions to a reactive Boussinesq system with front data on an infinite domain, Comm. Math. Phys., 193 (1998), 287-316.doi: 10.1007/s002200050330.


    J. Morgan, Global existence for semilinear parabolic systems, SIAM J. Math. Anal., 20 (1989), 1128-1144.doi: 10.1137/0520075.


    J. Morgan, Boundedness and decay results for reaction-diffusion systems, SIAM J. Math. Anal., 21 (1990), 1172-1189.doi: 10.1137/0521064.


    P. J. Moylan and D. J. Hill, Stability criteria for large-scale systems, IEEE Trans. Autom. Control, 23 (1978), 143-149.doi: 10.1109/TAC.1978.1101721.


    J. Murray, "Mathematical Biology," Biomathematics, 19, Springer-Verlag, Berlin, 1989.


    H. Othmer and E. Pate, Scale-invariance in reaction-diffusion models of spatial pattern formation, Proc. Natl. Acad. Sci., 77 (1980), 4180-4184.doi: 10.1073/pnas.77.7.4180.


    M. Pierre and D. Schmitt, Blowup in reaction-diffusion systems with dissipation of mass, SIAM Review, 42 (2000), 93-106.doi: 10.1137/S0036144599359735.


    R. Redheffer, R. Redlinger and W. Walter, A theorem of La Salle-Lyapunov type for parabolic systems, SIAM J. Math. Anal., 19 (1988), 121-132.


    W. Rudin, "Real and Complex Analysis," Third edition, McGraw-Hill Book Co., New York, 1987.


    S. D. M. Santos, P. J. Verveer and P. I. H. Bastiaens, Growth factor-induced MAPK network topology shapes Erk response determining PC-12 cell fate, Nature Cell Biology, 9 (2007), 324-330.doi: 10.1038/ncb1543.


    H. L. Smith, "Monotone Dynamical Systems: An Introduction to the Theory of Competitive and Cooperative Systems," Mathematical Surveys and Monographs, 41, AMS, Providence, RI, 1995.


    M. K. Sundareshan and M. Vidyasagar, $L^2$-stability of large-scale dynamical systems: Criteria via positive operator theory, IEEE Transactions on Automatic Control, AC-22 (1977), 396-399.


    A. Turing, The chemical basis of morphogenesis, Philos. Trans. Roy. Soc. B, 273 (1952), 37-72.doi: 10.1098/rstb.1952.0012.


    M. Vidyasagar, "Input-Output Analysis of Large-Scale Interconnected Systems. Decomposition, Well-Posedness and Stability," Lecture Notes in Control and Information Sciences, 29, Springer-Verlag, Berlin-New York, 1981.


    R. L. Wheeden and A. Zygmund, "Measure and Integral: An Introduction to Real Analysis," Pure and Applied Mathematics, Vol. 43, Marcel Dekker, Inc., New York-Basel, 1977.


    J. C. Willems, Dissipative dynamical systems. I. General Theory; Part II: Linear systems with quadratic supply rates, Archive for Rational Mechanics and Analysis, 45 (1972), 321-393.

  • 加载中

Article Metrics

HTML views() PDF downloads(93) Cited by(0)

Access History

Other Articles By Authors



    DownLoad:  Full-Size Img  PowerPoint