\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

A passivity-based stability criterion for reaction diffusion systems with interconnected structure

Abstract Related Papers Cited by
  • In this paper, stability of a class of reaction diffusion systems is studied. Conditions on global asymptotic stability of the homogeneous equilibrium are derived based on the diagonal stability of a dissipativity matrix. This work extends previous result on global asymptotic stability from cyclic systems to general systems with interconnected structure. In addition, it reformulates the approach using an "input-output" formalism that makes the results easier to understand and apply. A biological example from the Mitogen-Activated Protein Kinase (MAPK) system is provided at the end to illustrate the new approach and the main result.
    Mathematics Subject Classification: 35K57, 93D20, 93D30.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    S. Abdelmalek and S. Kouachi, Proof of existence of global solutions for m-component reaction-diffusion systems with mixed boundary conditions via the Lyapunov functional method, J. Phys. A, 40 (2007), 12335-12350.doi: 10.1088/1751-8113/40/41/005.

    [2]

    M. Arcak and E. D. Sontag, A passivity-based stability criterion for a class of biochemical reaction networks, Mathematical Biosciences and Engineering, 5 (2008), 1-19.doi: 10.3934/mbe.2008.5.1.

    [3]

    L. Edelstein-Keshet, "Mathematical Models in Biology," Reprint of the 1988 original, Classics in Applied Mathematics, 46, SIAM, Philadelphia, PA, 2005.

    [4]

    W. B. Fitzgibbon, S. L. Hollis and J. J. Morgan, Stability and Lyapunov functions for reaction-diffusion systems, SIAM J. Math. Anal., 28 (1997), 595-610.doi: 10.1137/S0036141094272241.

    [5]

    D. Henry, "Geometric Theory of Semilinear Parabolic Equations," Lecture Nones in Mathematics, 840, Springer-Verlag, Berlin-New York, 1981.

    [6]

    M. R. Jovanović, M. Arcak and E. D. SontagA passivity-based approach to stability of spatially distributed systems with a cyclic interconnection structure, IEEE Transactions on Circuits and Systems I. Regul. Pap., Special Issue on Systems Biology, 2008, 75-86.

    [7]

    B. N. Kholodenko, Cell-signalling dynamics in time and space, Nat. Rev. Mol. Cell. Biol., 7 (2006), 165-176.doi: 10.1038/nrm1838.

    [8]

    Y. Lou, T. Nagylaki and W.-M. Ni, On diffusion-induced blowups in a mutualistic model, Nonlinear Analysis, 45 (2001), 329-342.doi: 10.1016/S0362-546X(99)00346-6.

    [9]

    S. Malham and J. Xin, Global solutions to a reactive Boussinesq system with front data on an infinite domain, Comm. Math. Phys., 193 (1998), 287-316.doi: 10.1007/s002200050330.

    [10]

    J. Morgan, Global existence for semilinear parabolic systems, SIAM J. Math. Anal., 20 (1989), 1128-1144.doi: 10.1137/0520075.

    [11]

    J. Morgan, Boundedness and decay results for reaction-diffusion systems, SIAM J. Math. Anal., 21 (1990), 1172-1189.doi: 10.1137/0521064.

    [12]

    P. J. Moylan and D. J. Hill, Stability criteria for large-scale systems, IEEE Trans. Autom. Control, 23 (1978), 143-149.doi: 10.1109/TAC.1978.1101721.

    [13]

    J. Murray, "Mathematical Biology," Biomathematics, 19, Springer-Verlag, Berlin, 1989.

    [14]

    H. Othmer and E. Pate, Scale-invariance in reaction-diffusion models of spatial pattern formation, Proc. Natl. Acad. Sci., 77 (1980), 4180-4184.doi: 10.1073/pnas.77.7.4180.

    [15]

    M. Pierre and D. Schmitt, Blowup in reaction-diffusion systems with dissipation of mass, SIAM Review, 42 (2000), 93-106.doi: 10.1137/S0036144599359735.

    [16]

    R. Redheffer, R. Redlinger and W. Walter, A theorem of La Salle-Lyapunov type for parabolic systems, SIAM J. Math. Anal., 19 (1988), 121-132.

    [17]

    W. Rudin, "Real and Complex Analysis," Third edition, McGraw-Hill Book Co., New York, 1987.

    [18]

    S. D. M. Santos, P. J. Verveer and P. I. H. Bastiaens, Growth factor-induced MAPK network topology shapes Erk response determining PC-12 cell fate, Nature Cell Biology, 9 (2007), 324-330.doi: 10.1038/ncb1543.

    [19]

    H. L. Smith, "Monotone Dynamical Systems: An Introduction to the Theory of Competitive and Cooperative Systems," Mathematical Surveys and Monographs, 41, AMS, Providence, RI, 1995.

    [20]

    M. K. Sundareshan and M. Vidyasagar, $L^2$-stability of large-scale dynamical systems: Criteria via positive operator theory, IEEE Transactions on Automatic Control, AC-22 (1977), 396-399.

    [21]

    A. Turing, The chemical basis of morphogenesis, Philos. Trans. Roy. Soc. B, 273 (1952), 37-72.doi: 10.1098/rstb.1952.0012.

    [22]

    M. Vidyasagar, "Input-Output Analysis of Large-Scale Interconnected Systems. Decomposition, Well-Posedness and Stability," Lecture Notes in Control and Information Sciences, 29, Springer-Verlag, Berlin-New York, 1981.

    [23]

    R. L. Wheeden and A. Zygmund, "Measure and Integral: An Introduction to Real Analysis," Pure and Applied Mathematics, Vol. 43, Marcel Dekker, Inc., New York-Basel, 1977.

    [24]

    J. C. Willems, Dissipative dynamical systems. I. General Theory; Part II: Linear systems with quadratic supply rates, Archive for Rational Mechanics and Analysis, 45 (1972), 321-393.

  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(91) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return