Citation: |
[1] |
R. A. Adams, "Lecture Notes on $L^p$-Potential Theory,'' Department of Math., Univ. of Umeå, 1981. |
[2] |
N. Ansini and A. Braides, Asymptotic analysis of periodically-perforated nonlinear media, J. Math. Pures Appl. (9), 81 (2002), 439-451.doi: 10.1016/S0021-7824(01)01226-0. |
[3] |
J. Bourgain, H. Brezis and P. Mironescu, Another look at Sobolev spaces, in "Optimal Control and Partial Differential Equations" (eds. J.L. Menaldi, E. Rofman and A. Sulem), A Volume in Honour of A. Bensoussan's 60th Birthday, IOS Press, (2001), 439-455. |
[4] |
A. Braides, "$\Gamma$-Convergence for Beginners,'' Oxford Lecture Series in Mathematics and its Applications, 22, Oxford University Press, Oxford, 2002. |
[5] |
A. Braides and A. Defranceschi, "Homogenization of Multiple Integrals,'' Oxford Lecture Series in Mathematics and its Applications, 12, The Clarendon Press, Oxford University Press, New York, 1998. |
[6] |
H. Brezis, How to recognize constant functions. A connection with Sobolev spaces, Russian Math. Surveys, 57 (2002), 693-708.doi: 10.1070/RM2002v057n04ABEH000533. |
[7] |
H. Brezis and L. Nirenberg, Degree theory and BMO. I. Compact manifolds without boundaries, Selecta Math. (N.S.), 1 (1995), 197-263. |
[8] |
L. Caffarelli and A. Mellet, Random homogenization of an obstacle problem, Ann. Inst. H. Poincaré Anal. Non Linéaire, 26 (2009), 375-395. |
[9] |
L. Caffarelli and A. Mellet, Random homogenization of fractional obstacle problems, Netw. Heterog. Media, 3 (2008), 523-554.doi: 10.3934/nhm.2008.3.523. |
[10] |
L. Caffarelli and L. Silvestre, An extension problem related to fractional Laplacians, Comm. Partial Differential Equations, 32 (2007), 1245-1260. |
[11] |
S. Conti, A. Garroni and S. Müller, Singular kernels, multiscale decomposition of microstructure, and dislocation models, Arch. Rational Mech. Anal., 199 (2011), 779-819.doi: 10.1007/s00205-010-0333-7. |
[12] |
Ş. Costea, Strong $A_\infty$-weights and scaling invariant Besov capacities, Rev. Mat. Iberoam., 23 (2007), 1067-1114. |
[13] |
G. Dal Maso, "An Introduction to $\Gamma$-Convergence,'' Progress in Nonlinear Differential Equations and their Applications, 8, Birkhäuser Boston, Inc., Boston, MA, 1993. |
[14] |
F. Daví and P. M. Mariano, Evolution of domain walls in ferroelectric solids, J. Mech. Phys. Solids, 49 (2001), 1701-1726.doi: 10.1016/S0022-5096(01)00014-X. |
[15] |
M. Focardi, Homogenization of random fractional obstacle problems via $\Gamma$-convergence, Comm. Partial Differential Equations, 34 (2009), 1607-1631. |
[16] |
M. Focardi, Aperiodic fractional obstacle problems, Adv. Math., 225 (2010), 3502-3544.doi: 10.1016/j.aim.2010.06.014. |
[17] |
M. Focardi and A. Garroni, A $1D$ macroscopic phase field model for dislocations and a second order $\Gamma$-limit, Multiscale Model. Simul., 6 (2007), 1098-1124. |
[18] |
A. Garroni and S. Müller, $\Gamma$-limit of a phase-field model of dislocations, SIAM J. Math. Anal., 36 (2005), 1943-1964. |
[19] |
A. Garroni and S. Müller, A variational model for dislocations in the line tension limit, Arch. Ration. Mech. Anal., 181 (2006), 535-578.doi: 10.1007/s00205-006-0432-7. |
[20] |
J. Heinonen, T. Kilpeläinen and O. Martio, "Nonlinear Potential Theory of Degenerate Elliptic Equations,'' Oxford Mathematical Monographs, Oxford Science Publications, The Clarendon Press, Oxford University Press, New York, 1993. |
[21] |
M. Koslowski, A. M. Cuitiño and M. Ortiz, A phase-field theory of dislocation dynamics, strain hardening and hysteresis in ductile single crystals, J. Mech. Phys. Solids, 50 (2002), 2597-2635.doi: 10.1016/S0022-5096(02)00037-6. |
[22] |
O. Savin and E. Valdinoci, $\Gamma$-convergence for nonlocal phase transitions, preprint, arXiv:1007.1725. |
[23] |
M. Senechal, "Quasicrystals and Geometry,'' Cambridge University Press, Cambridge, 1995. |
[24] |
L. Sigalotti, Asymptotic analysis of periodically-perforated nonlinear media at the critical exponent, Commun. Contemp. Math., 11 (2009), 1009-1033.doi: 10.1142/S0219199709003648. |
[25] |
H. Triebel, "Interpolation Theory, Function Spaces, Differential Operators,'' North-Holland Mathematical Library, 18, North Holland Publishing Co., Amsterdam-New York, 1978. |