-
Previous Article
Essential nonlinearity implied by symmetry group. Problems of affine invariance in mechanics and physics
- DCDS-B Home
- This Issue
-
Next Article
Towards uniformly $\Gamma$-equivalent theories for nonconvex discrete systems
The co-divergence of vector valued currents
1. | Department of Mechanical Engineering, Ben-Gurion University of the Negev, P.O.Box 653, Beer-Sheva, 84105, Israel, Israel |
References:
[1] |
G. de Rham, "Differentiable Manifolds. Forms, Currents, Harmonic Forms,'' Translated from the French by F. R. Smith, With an introduction by S. S. Chern, Grundlehren der Mathematischen Wissenschaften, 266, Springer-Verlag, Berlin, 1984. |
[2] |
H. Federer, "Geometric Measure Theory,'' Springer-Verlag, 1969. |
[3] |
V. M. Gol'dshteĭn, V. I. Kuz'minow and I. A. Shvedov, Differential forms on Lipschitz manifold, Sibirskii Matematicheskii Zhurnal, 23 (1982), 16-30, 215. |
[4] |
M. Giaquinta, G. Modica and J. Souček, "Cartesian Currents in the Calculus of Variations. I. Cartesian Currents,'' Ergebnisse der Mathematik und ihrer Grenzgebiete, 3 Folge, A Series of Modern Surveys in Mathematics, 37, Springer-Verlag, Berlin, 1998. |
[5] |
R. S. Palais, "Foundations of Global Non-Linear Analysis,'' W. A. Benjamin, Inc., New York-Amsterdam, 1968. |
[6] |
R. S. Palais, "The Geometrization of Physics,'' Lecture notes from a course at National Tsing Hua University, Hsinchu, Taiwan, 1981. |
[7] |
G. Rodnay and R. Segev, Cauchy's flux theorem in light of geometric integration theory, Journal of Elasticity, 71 (2003), 183-203.
doi: 10.1023/B:ELAS.0000005545.46932.08. |
[8] |
R. Segev, Metric-independent analysis of the stress-energy tensor, Journal of Mathematical Physics, 43 (2002), 3220-3231.
doi: 10.1063/1.1475347. |
[9] |
H. Whitney, "Geometric Integration Theory,'' Princeton University Press, 1957. |
show all references
References:
[1] |
G. de Rham, "Differentiable Manifolds. Forms, Currents, Harmonic Forms,'' Translated from the French by F. R. Smith, With an introduction by S. S. Chern, Grundlehren der Mathematischen Wissenschaften, 266, Springer-Verlag, Berlin, 1984. |
[2] |
H. Federer, "Geometric Measure Theory,'' Springer-Verlag, 1969. |
[3] |
V. M. Gol'dshteĭn, V. I. Kuz'minow and I. A. Shvedov, Differential forms on Lipschitz manifold, Sibirskii Matematicheskii Zhurnal, 23 (1982), 16-30, 215. |
[4] |
M. Giaquinta, G. Modica and J. Souček, "Cartesian Currents in the Calculus of Variations. I. Cartesian Currents,'' Ergebnisse der Mathematik und ihrer Grenzgebiete, 3 Folge, A Series of Modern Surveys in Mathematics, 37, Springer-Verlag, Berlin, 1998. |
[5] |
R. S. Palais, "Foundations of Global Non-Linear Analysis,'' W. A. Benjamin, Inc., New York-Amsterdam, 1968. |
[6] |
R. S. Palais, "The Geometrization of Physics,'' Lecture notes from a course at National Tsing Hua University, Hsinchu, Taiwan, 1981. |
[7] |
G. Rodnay and R. Segev, Cauchy's flux theorem in light of geometric integration theory, Journal of Elasticity, 71 (2003), 183-203.
doi: 10.1023/B:ELAS.0000005545.46932.08. |
[8] |
R. Segev, Metric-independent analysis of the stress-energy tensor, Journal of Mathematical Physics, 43 (2002), 3220-3231.
doi: 10.1063/1.1475347. |
[9] |
H. Whitney, "Geometric Integration Theory,'' Princeton University Press, 1957. |
[1] |
Didier Bresch, Jacques Simon. Western boundary currents versus vanishing depth. Discrete and Continuous Dynamical Systems - B, 2003, 3 (3) : 469-477. doi: 10.3934/dcdsb.2003.3.469 |
[2] |
Mehmet Onur Fen, Marat Akhmet. Impulsive SICNNs with chaotic postsynaptic currents. Discrete and Continuous Dynamical Systems - B, 2016, 21 (4) : 1119-1148. doi: 10.3934/dcdsb.2016.21.1119 |
[3] |
Luigi Ambrosio, Gianluca Crippa, Philippe G. Lefloch. Leaf superposition property for integer rectifiable currents. Networks and Heterogeneous Media, 2008, 3 (1) : 85-95. doi: 10.3934/nhm.2008.3.85 |
[4] |
Huai-Dong Cao and Jian Zhou. On quantum de Rham cohomology theory. Electronic Research Announcements, 1999, 5: 24-34. |
[5] |
Jiahui Chen, Rundong Zhao, Yiying Tong, Guo-Wei Wei. Evolutionary de Rham-Hodge method. Discrete and Continuous Dynamical Systems - B, 2021, 26 (7) : 3785-3821. doi: 10.3934/dcdsb.2020257 |
[6] |
Luciano Abadías, Carlos Lizama, Pedro J. Miana, M. Pilar Velasco. On well-posedness of vector-valued fractional differential-difference equations. Discrete and Continuous Dynamical Systems, 2019, 39 (5) : 2679-2708. doi: 10.3934/dcds.2019112 |
[7] |
Monica Motta, Caterina Sartori. Generalized solutions to nonlinear stochastic differential equations with vector--valued impulsive controls. Discrete and Continuous Dynamical Systems, 2011, 29 (2) : 595-613. doi: 10.3934/dcds.2011.29.595 |
[8] |
Markus Kunze, Abdallah Maichine, Abdelaziz Rhandi. Vector-valued Schrödinger operators in Lp-spaces. Discrete and Continuous Dynamical Systems - S, 2020, 13 (5) : 1529-1541. doi: 10.3934/dcdss.2020086 |
[9] |
S. Aaron, Z. Conn, Robert S. Strichartz, H. Yu. Hodge-de Rham theory on fractal graphs and fractals. Communications on Pure and Applied Analysis, 2014, 13 (2) : 903-928. doi: 10.3934/cpaa.2014.13.903 |
[10] |
Simão P. S. Santos, Natália Martins, Delfim F. M. Torres. Noether currents for higher-order variational problems of Herglotz type with time delay. Discrete and Continuous Dynamical Systems - S, 2018, 11 (1) : 91-102. doi: 10.3934/dcdss.2018006 |
[11] |
Hinke M. Osinga, Arthur Sherman, Krasimira Tsaneva-Atanasova. Cross-currents between biology and mathematics: The codimension of pseudo-plateau bursting. Discrete and Continuous Dynamical Systems, 2012, 32 (8) : 2853-2877. doi: 10.3934/dcds.2012.32.2853 |
[12] |
Huiqiang Jiang. Regularity of a vector valued two phase free boundary problems. Conference Publications, 2013, 2013 (special) : 365-374. doi: 10.3934/proc.2013.2013.365 |
[13] |
Paolo Podio-Guidugli. On the modeling of transport phenomena in continuum and statistical mechanics. Discrete and Continuous Dynamical Systems - S, 2017, 10 (6) : 1393-1411. doi: 10.3934/dcdss.2017074 |
[14] |
Piotr Gwiazda, Piotr Minakowski, Agnieszka Świerczewska-Gwiazda. On the anisotropic Orlicz spaces applied in the problems of continuum mechanics. Discrete and Continuous Dynamical Systems - S, 2013, 6 (5) : 1291-1306. doi: 10.3934/dcdss.2013.6.1291 |
[15] |
Angelo Favini, Yakov Yakubov. Regular boundary value problems for ordinary differential-operator equations of higher order in UMD Banach spaces. Discrete and Continuous Dynamical Systems - S, 2011, 4 (3) : 595-614. doi: 10.3934/dcdss.2011.4.595 |
[16] |
Olaf Klein. On the representation of hysteresis operators acting on vector-valued, left-continuous and piecewise monotaffine and continuous functions. Discrete and Continuous Dynamical Systems, 2015, 35 (6) : 2591-2614. doi: 10.3934/dcds.2015.35.2591 |
[17] |
M. M. Rao. Integration with vector valued measures. Discrete and Continuous Dynamical Systems, 2013, 33 (11&12) : 5429-5440. doi: 10.3934/dcds.2013.33.5429 |
[18] |
Luigi Fontana, Steven G. Krantz and Marco M. Peloso. Hodge theory in the Sobolev topology for the de Rham complex on a smoothly bounded domain in Euclidean space. Electronic Research Announcements, 1995, 1: 103-107. |
[19] |
Shouchuan Hu, Nikolaos S. Papageorgiou. Nonlinear Neumann equations driven by a nonhomogeneous differential operator. Communications on Pure and Applied Analysis, 2011, 10 (4) : 1055-1078. doi: 10.3934/cpaa.2011.10.1055 |
[20] |
Monika Eisenmann, Etienne Emmrich, Volker Mehrmann. Convergence of the backward Euler scheme for the operator-valued Riccati differential equation with semi-definite data. Evolution Equations and Control Theory, 2019, 8 (2) : 315-342. doi: 10.3934/eect.2019017 |
2021 Impact Factor: 1.497
Tools
Metrics
Other articles
by authors
[Back to Top]