May  2012, 17(3): 775-799. doi: 10.3934/dcdsb.2012.17.775

Fragmentation and monomer lengthening of rod-like polymers, a relevant model for prion proliferation

1. 

Université de Lyon, CNRS UMR 5208, Université Lyon 1, Institut Camille Jordan, 43, blvd. du 11 novembre 1918, F-69622 Villeurbanne cedex, France, France, France

2. 

Université de Lyon, CNRS UMR 5208, INSA-Lyon, Institut Camille Jordan, 21, avenue Jean Capelle, F-69621 Villeurbanne cedex, France

Received  June 2011 Revised  October 2011 Published  January 2012

The Greer, Pujo-Menjouet and Webb model [Greer et al., J. Theoret. Biol., 242 (2006), 598--606] for prion dynamics was found to be in good agreement with experimental observations under no-flow conditions. The objective of this work is to generalize the problem to the framework of general polymerization-fragmentation under flow motion, motivated by the fact that laboratory work often involves prion dynamics under flow conditions in order to observe faster processes. Moreover, understanding and modelling the microstructure influence of macroscopically monitored non-Newtonian behaviour is crucial for sensor design, with the goal to provide practical information about ongoing molecular evolution. This paper's results can then be considered as one step in the mathematical understanding of such models, namely the proof of positivity and existence of solutions in suitable functional spaces. To that purpose, we introduce a new model based on the rigid-rod polymer theory to account for the polymer dynamics under flow conditions. As expected, when applied to the prion problem, in the absence of motion it reduces to that in Greer et al. (2006). At the heart of any polymer kinetical theory there is a configurational probability diffusion partial differential equation (PDE) of Fokker-Planck-Smoluchowski type. The main mathematical result of this paper is the proof of existence of positive solutions to the aforementioned PDE for a class of flows of practical interest, taking into account the flow induced splitting/lengthening of polymers in general, and prions in particular.
Citation: Ionel Sorin Ciuperca, Erwan Hingant, Liviu Iulian Palade, Laurent Pujo-Menjouet. Fragmentation and monomer lengthening of rod-like polymers, a relevant model for prion proliferation. Discrete and Continuous Dynamical Systems - B, 2012, 17 (3) : 775-799. doi: 10.3934/dcdsb.2012.17.775
References:
[1]

R. B. Bird, C. F. Curtiss, R. C. Armstrong and O. Hassager, "Dynamics of Polymeric Liquids, Vol. 2: Kinetic Theory," J. Wiley & Sons, New York, 1987.

[2]

V. Calvez, N. Lenuzza, D. Oelz, J. P. Deslys, P. Laurent, F. Mouthon and B. Perthame, Size distribution dependence of prion aggregates infectivity, Mathematical Biosciences, 217 (2009), 88-99. doi: 10.1016/j.mbs.2008.10.007.

[3]

B. Caughey, G. S. Baron, B. Chesebro and M. Jeffrey, Getting a grip on prions: Oligomers, amyloids, and pathological membrane interactions, Annu. Rev. Biochem., 78 (2009), 177-204. doi: 10.1146/annurev.biochem.78.082907.145410.

[4]

M. Doumic, T. Goudon and T. Lepoutre, Scaling limit of a discrete prion dynamics model, Comm. in Math. Sci., 7 (2009), 839-865.

[5]

H. Engler, J. Prüss and G. F. Webb, Analysis of a model for the dynamics of prions II, J. Math. Anal. Appl., 324 (2006), 98-117. doi: 10.1016/j.jmaa.2005.11.021.

[6]

M. L. Greer, L. Pujo-Menjouet and G. F. Webb, A mathematical analysis of the dynamics of prion proliferation, J. Theoret. Biol., 242 (2006), 598-606. doi: 10.1016/j.jtbi.2006.04.010.

[7]

M. L. Greer, P. van den Driessche, L. Wang and G. F. Webb, Effects of general incidence and polymer joining on nucleated polymerization in a model of prion proliferation, SIAM J. Appl. Math., 68 (2007), 154-170. doi: 10.1137/06066076X.

[8]

R. R. Huilgol and N. Phan-Thien, "Fluid Mechanics of Viscoelasticity," Elsevier, Amsterdam, 1997.

[9]

J. G. Kirkwood, "Macromolecules," ed. P. L. Auer, Gordon and Breach, 1968.

[10]

P. T. Lansbury and B. Caughey, The chemistry of scrapie infection: Implications of the 'ice 9' metaphor, Chemistry & Biology, 2 (1995), 1-5. doi: 10.1016/1074-5521(95)90074-8.

[11]

P. Laurençot and C. Walker, Well-posedness for a model of prion proliferation dynamics, J. Evol. Equ., 7 (2007), 241-264. doi: 10.1007/s00028-006-0279-2.

[12]

J. Masel, V. A. Jansen and M. A. Nowak, Quantifying the kinetic parameters of prion replication, Biophys. Chem., 77 (1999), 139-152. doi: 10.1016/S0301-4622(99)00016-2.

[13]

F. Otto and A. E. Tzavaras, Continuity of velocity gradients in suspensions of rod-like molecules, Commun. Math. Phys., 277 (2008), 729-758. doi: 10.1007/s00220-007-0373-5.

[14]

S. B. Prusiner, Prions, Proc. Natl. Acad. Sci. USA, 95 (1998), 13363-13383. doi: 10.1073/pnas.95.23.13363.

[15]

J. Prüss, L. Pujo-Menjouet, G. F. Webb and R. Zacher, Analysis of a model for the dynamics of prions, Discrete Contin. Dyn. Syst. Ser. B, 6 (2006), 225-235.

[16]

T. Scheibel, A. S. Kowal, J. D. Bloom and S. L. Lindquist, Bidirectional amyloid fiber growth for a yeast prion determinant, Curr. Biol., 11 (2001), 366-369. doi: 10.1016/S0960-9822(01)00099-9.

[17]

G. Simonett and C. Walker, On the solvability of a mathematical model for prion proliferation, J. Math. Anal. Appl., 324 (2006), 580-603. doi: 10.1016/j.jmaa.2005.12.036.

[18]

C. Walker, Prion proliferation with unbounded polymerization rates, in "Proceedings of the Sixth Mississippi State-UBA Conference on Differential Equations and Computational Simulations," Electron. J. Diff. Eqns. Conference, 15, Southwest Texas State Univ., San Marcos, TX, (2007), 387-397.

[19]

V. Zamoza-Signoret, J.-D. Arnaud, P. Fontes, M.-T. Alvarez-Martinez and J.-P. Liautard, Physiological role of the cellular prion protein, Vet. Res, 39 (2008).

show all references

References:
[1]

R. B. Bird, C. F. Curtiss, R. C. Armstrong and O. Hassager, "Dynamics of Polymeric Liquids, Vol. 2: Kinetic Theory," J. Wiley & Sons, New York, 1987.

[2]

V. Calvez, N. Lenuzza, D. Oelz, J. P. Deslys, P. Laurent, F. Mouthon and B. Perthame, Size distribution dependence of prion aggregates infectivity, Mathematical Biosciences, 217 (2009), 88-99. doi: 10.1016/j.mbs.2008.10.007.

[3]

B. Caughey, G. S. Baron, B. Chesebro and M. Jeffrey, Getting a grip on prions: Oligomers, amyloids, and pathological membrane interactions, Annu. Rev. Biochem., 78 (2009), 177-204. doi: 10.1146/annurev.biochem.78.082907.145410.

[4]

M. Doumic, T. Goudon and T. Lepoutre, Scaling limit of a discrete prion dynamics model, Comm. in Math. Sci., 7 (2009), 839-865.

[5]

H. Engler, J. Prüss and G. F. Webb, Analysis of a model for the dynamics of prions II, J. Math. Anal. Appl., 324 (2006), 98-117. doi: 10.1016/j.jmaa.2005.11.021.

[6]

M. L. Greer, L. Pujo-Menjouet and G. F. Webb, A mathematical analysis of the dynamics of prion proliferation, J. Theoret. Biol., 242 (2006), 598-606. doi: 10.1016/j.jtbi.2006.04.010.

[7]

M. L. Greer, P. van den Driessche, L. Wang and G. F. Webb, Effects of general incidence and polymer joining on nucleated polymerization in a model of prion proliferation, SIAM J. Appl. Math., 68 (2007), 154-170. doi: 10.1137/06066076X.

[8]

R. R. Huilgol and N. Phan-Thien, "Fluid Mechanics of Viscoelasticity," Elsevier, Amsterdam, 1997.

[9]

J. G. Kirkwood, "Macromolecules," ed. P. L. Auer, Gordon and Breach, 1968.

[10]

P. T. Lansbury and B. Caughey, The chemistry of scrapie infection: Implications of the 'ice 9' metaphor, Chemistry & Biology, 2 (1995), 1-5. doi: 10.1016/1074-5521(95)90074-8.

[11]

P. Laurençot and C. Walker, Well-posedness for a model of prion proliferation dynamics, J. Evol. Equ., 7 (2007), 241-264. doi: 10.1007/s00028-006-0279-2.

[12]

J. Masel, V. A. Jansen and M. A. Nowak, Quantifying the kinetic parameters of prion replication, Biophys. Chem., 77 (1999), 139-152. doi: 10.1016/S0301-4622(99)00016-2.

[13]

F. Otto and A. E. Tzavaras, Continuity of velocity gradients in suspensions of rod-like molecules, Commun. Math. Phys., 277 (2008), 729-758. doi: 10.1007/s00220-007-0373-5.

[14]

S. B. Prusiner, Prions, Proc. Natl. Acad. Sci. USA, 95 (1998), 13363-13383. doi: 10.1073/pnas.95.23.13363.

[15]

J. Prüss, L. Pujo-Menjouet, G. F. Webb and R. Zacher, Analysis of a model for the dynamics of prions, Discrete Contin. Dyn. Syst. Ser. B, 6 (2006), 225-235.

[16]

T. Scheibel, A. S. Kowal, J. D. Bloom and S. L. Lindquist, Bidirectional amyloid fiber growth for a yeast prion determinant, Curr. Biol., 11 (2001), 366-369. doi: 10.1016/S0960-9822(01)00099-9.

[17]

G. Simonett and C. Walker, On the solvability of a mathematical model for prion proliferation, J. Math. Anal. Appl., 324 (2006), 580-603. doi: 10.1016/j.jmaa.2005.12.036.

[18]

C. Walker, Prion proliferation with unbounded polymerization rates, in "Proceedings of the Sixth Mississippi State-UBA Conference on Differential Equations and Computational Simulations," Electron. J. Diff. Eqns. Conference, 15, Southwest Texas State Univ., San Marcos, TX, (2007), 387-397.

[19]

V. Zamoza-Signoret, J.-D. Arnaud, P. Fontes, M.-T. Alvarez-Martinez and J.-P. Liautard, Physiological role of the cellular prion protein, Vet. Res, 39 (2008).

[1]

Linjie Xiong, Tao Wang, Lusheng Wang. Global existence and decay of solutions to the Fokker-Planck-Boltzmann equation. Kinetic and Related Models, 2014, 7 (1) : 169-194. doi: 10.3934/krm.2014.7.169

[2]

José Antonio Alcántara, Simone Calogero. On a relativistic Fokker-Planck equation in kinetic theory. Kinetic and Related Models, 2011, 4 (2) : 401-426. doi: 10.3934/krm.2011.4.401

[3]

Lvqiao Liu, Hao Wang. Global existence and decay of solutions for hard potentials to the fokker-planck-boltzmann equation without cut-off. Communications on Pure and Applied Analysis, 2020, 19 (6) : 3113-3136. doi: 10.3934/cpaa.2020135

[4]

John W. Barrett, Endre Süli. Existence of global weak solutions to Fokker-Planck and Navier-Stokes-Fokker-Planck equations in kinetic models of dilute polymers. Discrete and Continuous Dynamical Systems - S, 2010, 3 (3) : 371-408. doi: 10.3934/dcdss.2010.3.371

[5]

Kim-Ngan Le, William McLean, Martin Stynes. Existence, uniqueness and regularity of the solution of the time-fractional Fokker–Planck equation with general forcing. Communications on Pure and Applied Analysis, 2019, 18 (5) : 2765-2787. doi: 10.3934/cpaa.2019124

[6]

Bingkang Huang, Lan Zhang. A global existence of classical solutions to the two-dimensional Vlasov-Fokker-Planck and magnetohydrodynamics equations with large initial data. Kinetic and Related Models, 2019, 12 (2) : 357-396. doi: 10.3934/krm.2019016

[7]

Young-Pil Choi, In-Jee Jeong. Global-in-time existence of weak solutions for Vlasov-Manev-Fokker-Planck system. Kinetic and Related Models, , () : -. doi: 10.3934/krm.2022021

[8]

Guanghua Ji, M. Gregory Forest, Qi Wang. Structure formation in sheared polymer-rod nanocomposites. Discrete and Continuous Dynamical Systems - S, 2015, 8 (2) : 341-379. doi: 10.3934/dcdss.2015.8.341

[9]

Sylvain De Moor, Luis Miguel Rodrigues, Julien Vovelle. Invariant measures for a stochastic Fokker-Planck equation. Kinetic and Related Models, 2018, 11 (2) : 357-395. doi: 10.3934/krm.2018017

[10]

Marco Torregrossa, Giuseppe Toscani. On a Fokker-Planck equation for wealth distribution. Kinetic and Related Models, 2018, 11 (2) : 337-355. doi: 10.3934/krm.2018016

[11]

Michael Herty, Christian Jörres, Albert N. Sandjo. Optimization of a model Fokker-Planck equation. Kinetic and Related Models, 2012, 5 (3) : 485-503. doi: 10.3934/krm.2012.5.485

[12]

Florian Schneider, Andreas Roth, Jochen Kall. First-order quarter-and mixed-moment realizability theory and Kershaw closures for a Fokker-Planck equation in two space dimensions. Kinetic and Related Models, 2017, 10 (4) : 1127-1161. doi: 10.3934/krm.2017044

[13]

Ludovic Dan Lemle. $L^1(R^d,dx)$-uniqueness of weak solutions for the Fokker-Planck equation associated with a class of Dirichlet operators. Electronic Research Announcements, 2008, 15: 65-70. doi: 10.3934/era.2008.15.65

[14]

Xing Huang, Michael Röckner, Feng-Yu Wang. Nonlinear Fokker–Planck equations for probability measures on path space and path-distribution dependent SDEs. Discrete and Continuous Dynamical Systems, 2019, 39 (6) : 3017-3035. doi: 10.3934/dcds.2019125

[15]

Yuan Gao, Guangzhen Jin, Jian-Guo Liu. Inbetweening auto-animation via Fokker-Planck dynamics and thresholding. Inverse Problems and Imaging, 2021, 15 (5) : 843-864. doi: 10.3934/ipi.2021016

[16]

Philippe Laurençot, Barbara Niethammer, Juan J.L. Velázquez. Oscillatory dynamics in Smoluchowski's coagulation equation with diagonal kernel. Kinetic and Related Models, 2018, 11 (4) : 933-952. doi: 10.3934/krm.2018037

[17]

Prasanta Kumar Barik. Existence of mass-conserving weak solutions to the singular coagulation equation with multiple fragmentation. Evolution Equations and Control Theory, 2020, 9 (2) : 431-446. doi: 10.3934/eect.2020012

[18]

Helge Dietert, Josephine Evans, Thomas Holding. Contraction in the Wasserstein metric for the kinetic Fokker-Planck equation on the torus. Kinetic and Related Models, 2018, 11 (6) : 1427-1441. doi: 10.3934/krm.2018056

[19]

Hyung Ju Hwang, Juhi Jang. On the Vlasov-Poisson-Fokker-Planck equation near Maxwellian. Discrete and Continuous Dynamical Systems - B, 2013, 18 (3) : 681-691. doi: 10.3934/dcdsb.2013.18.681

[20]

Andreas Denner, Oliver Junge, Daniel Matthes. Computing coherent sets using the Fokker-Planck equation. Journal of Computational Dynamics, 2016, 3 (2) : 163-177. doi: 10.3934/jcd.2016008

2021 Impact Factor: 1.497

Metrics

  • PDF downloads (86)
  • HTML views (0)
  • Cited by (2)

[Back to Top]