January  2013, 18(1): 1-36. doi: 10.3934/dcdsb.2013.18.1

Second order corrector in the homogenization of a conductive-radiative heat transfer problem

1. 

CMAP, Ecole Polytechnique, 91128 Palaiseau, & DM2S, CEA Saclay, 91191 Gif sur Yvette, France

2. 

DM2S/SFME/LTMF, CEA Saclay, 91191 Gif sur Yvette, & CMAP, Ecole Polytechnique, 91128 Palaiseau, France

Received  March 2012 Revised  July 2012 Published  September 2012

This paper focuses on the contribution of the so-called second order corrector in periodic homogenization applied to a conductive-radiative heat transfer problem. More precisely, heat is diffusing in a periodically perforated domain with a non-local boundary condition modelling the radiative transfer in each hole. If the source term is a periodically oscillating function (which is the case in our application to nuclear reactor physics), a strong gradient of the temperature takes place in each periodicity cell, corresponding to a large heat flux between the sources and the perforations. This effect cannot be taken into account by the homogenized model, neither by the first order corrector. We show that this local gradient effect can be reproduced if the second order corrector is added to the reconstructed solution.
Citation: Grégoire Allaire, Zakaria Habibi. Second order corrector in the homogenization of a conductive-radiative heat transfer problem. Discrete and Continuous Dynamical Systems - B, 2013, 18 (1) : 1-36. doi: 10.3934/dcdsb.2013.18.1
References:
[1]

G. Allaire, Homogenization and two-scale convergence, SIAM J. Math. Anal., 23 (1992), 1482-1518.

[2]

G. Allaire and M. Amar, Boundary layer tails in periodic homogenization, ESAIM Control Optim. Calc. Var., 4 (1999), 209-243.

[3]

G. Allaire and K. El Ganaoui, Homogenization of a conductive and radiative heat transfer problem, Multiscale Model. Simul., 7 (2008), 1148-1170.

[4]

G. Allaire and Z. Habibi, "Homogenization of a Conductive, Convective and Radiative Heat Transfer Problem," submitted. Internal report, 746, CMAP, Ecole Polytechnique (March 2012). Available from: http://www.cmap.polytechnique.fr/preprint/repository/746.pdf

[5]

A. A. Amosov, Stationary nonlinear nonlocal problem of radiative-conductive heat transfer in a system of opaque bodies with properties depending on radiation frequency, J. Math. Sci., 164 (2010), 309-344.

[6]

N. Bakhvalov and G. Panasenko, "Homogenisation: Averaging Processes in Periodic Media," vol. 36 of Mathematics and its Applications (Soviet Series). Kluwer Academic Publishers Group, Dordrecht, 1989. Mathematical problems in the mechanics of composite materials, Translated from the Russian by D. Leĭtes.

[7]

A. Bensoussan, J. L. Lions and G. Papanicolaou, "Asymptotic analysis for periodic structures," vol. 5 of Studies in Mathematics and its Applications. North-Holland Publishing Co., Amsterdam, 1978.

[8]

J. F. Bourgat, "Numerical Experiments of the Homogenization Method for Operators with Periodic Coefficients," Computing methods in applied sciences and engineering (Proc. Third Internat. Sympos., Versailles, 1977), I, pp. 330-356, Lecture Notes in Math., 704, Springer, Berlin, 1979.

[9]

J. F. Bourgat and A. Dervieux, "Méthode D'homogénéisation des Opérateurs à Coefficients Périodiques: Étude des Correcteurs Provenant du Développement Asymptotique," IRIA-LABORIA, Rapport 278, 1978.

[10]

S. Boyaval, Reduced-bases approach for homogenization beyond the periodic setting, Multiscale Model. Simul., 7 (2008), 466-494.

[11]

J. Casado-Diaz, The asymptotic behaviour near the boundary of periodic homogenization problems via two-scale convergence, Proc. Roy. Soc. Edinburgh Sect. A, 138 (2008), 33-66.

[12]

, Cast3M. Available from: http://www-cast3m.cea.fr.

[13]

S. Chandrasekhar, "Radiative Transfer," Dover Publications Inc., New York, 1960.

[14]

K. Cherednichenko and V. Smyshlyaev, On full two-scale expansion of the solutions of nonlinear periodic rapidly oscillating problems and higher-order homogenised variational problems, Arch. Ration. Mech. Anal., 174 (2004), 385-442.

[15]

D. Cioranescu and P. Donato, "An Introduction to Homogenization," vol. 17 of Oxford Lecture Series in Mathematics and its Applications. The Clarendon Press Oxford University Press, New York, 1999.

[16]

CEA e-den, "Les réacteurs Nucléaires à Caloporteur Gaz," CEA Saclay et Le Moniteur Editions. Monographie Den, 2006. Available from: http://nucleaire.cea.fr/fr/publications/pdf/M0-fr.pdf.

[17]

C. Conca, R. Orive and M. Vanninathan, First and second corrector in homogenization by Bloch waves, Bol. Soc. Esp. Mat. Apl. S$\vec{\ e}$MA, (2008), 61-69.

[18]

D. Gérard-Varet and N. Masmoudi, Homogenization in polygonal domains, J. Eur. Math. Soc., 13 (2011), 1477-1503.

[19]

D. Gérard-Varet and N. Masmoudi, Homogenization and boundary layer, to appear in Acta Mathematica.

[20]

G. Griso, Interior error estimate for periodic homogenization, Anal. Appl. (Singap.), 4 (2006), 61-79.

[21]

Z. Habibi, Homogenization of a conductive-radiative heat transfer problem, the contribution of a second order corrector, ESAIM: Proc. Volume 35, Congrés National de Mathématiques Appliquées et Industrielles, 228-233, March2012. Available from: http://dx.doi.org/10.1051/proc/201235019.

[22]

Z. Habibi, Homogénéisation et convergence à deux échelles lors d'échanges thermiques stationnaires et transitoires dans un cœur de réacteur à caloporteur gaz, PhD thesis, Ecole Polytechnique, 2011. Available from: http://tel.archives-ouvertes.fr/tel-00695638

[23]

P. S. Heckbert., "Simulating Global Illumination Using Adaptive Meshing," PhD thesis, UC Berkeley, 1991.

[24]

V. H. Hoang and Ch. Schwab, High-dimensional finite elements for elliptic problems with multiple scales, Multiscale Model. Simul. 3 (2004/05), 168-194.

[25]

U. Hornung, "Homogenization and Porous Media," vol. 6 of "Interdisciplinary Applied Mathematics," Springer-Verlag, New York, 1997.

[26]

J. R. Howell, "A Catalogue of Radiation Heat Transfer Factors," The university of Texas at Austin, Austin, Texas, 3 edition, (2010). Available from: http://www.engr.uky.edu/rtl/Catalog/.

[27]

V. V. Jikov, S. M. Kozlov and O. A. Oleinik, "Homogenization of Differential Operators and Integral Functionals," Springer Verlag, 1994.

[28]

C. Kenig, F. Lin and Z. Shen, Convergence rates in $L^2$ for elliptic homogenization problems, Arch. Ration. Mech. Anal. 203 (2012), 1009-1036, arXiv:1103.0023.

[29]

M. Laitinen and T. Tiihonen, Conductive-radiative heat transfer in grey materials, Quart. Appl. Math., 59 (2001), 737-768.

[30]

J. L. Lions, "Some Methods in the Mathematical Analysis of Systems and Their Control," Kexue Chubanshe (Science Press), Beijing, 1981.

[31]

Y. Maday, A. T. Patera and G. Turinici, Global a priori convergence theory for reduced-basis approximations of single-parameter symmetric coercive elliptic partial differential equations, C. R. Math. Acad. Sci. Paris, 335 (2002), 289-294.

[32]

F. M. Modest, "Radiative Heat Transfer," Academic Press, 2 edition, 2003.

[33]

S. Moskow and M. Vogelius, First-order corrections to the homogenised eigenvalues of aperiodic composite medium. A convergence proof, Proc. Roy. Soc. Edinburgh Sect. A, 127 (1997), 1263-1299.

[34]

G. Nguetseng, A general convergence result for a functional related to the theory of homogenization, SIAM J. Math. Anal., 20 (1989), 608-623.

[35]

D. Onofrei and B. Vernescu, Error estimates for periodic homogenization with non-smooth coefficients, Asymptot. Anal., 54 (2007), 103-123.

[36]

E. Sanchez-Palencia, "Nonhomogeneous Media and Vibration Theory," vol. 127 of Lecture Notes in Physics, Springer-Verlag, Berlin, 1980.

[37]

L. Tartar, "The General Theory of Homogenization. A Personalized Introduction, Lecture Notes of the Unione Matematica Italiana," Springer Verlag, Berlin; UMI, Bologna, 7 edition, 2009.

[38]

T. Tiihonen, Stefan-boltzman radiation on non-convex surfaces, Math. Methods Appl. Sci., 20 (1997), 47-57.

[39]

T. Tiihonen, Finite element approximation of nonlocal heat radiation problems, Math. Models Methods Appl. Sci., 8 (1998), 1071-1089.

show all references

References:
[1]

G. Allaire, Homogenization and two-scale convergence, SIAM J. Math. Anal., 23 (1992), 1482-1518.

[2]

G. Allaire and M. Amar, Boundary layer tails in periodic homogenization, ESAIM Control Optim. Calc. Var., 4 (1999), 209-243.

[3]

G. Allaire and K. El Ganaoui, Homogenization of a conductive and radiative heat transfer problem, Multiscale Model. Simul., 7 (2008), 1148-1170.

[4]

G. Allaire and Z. Habibi, "Homogenization of a Conductive, Convective and Radiative Heat Transfer Problem," submitted. Internal report, 746, CMAP, Ecole Polytechnique (March 2012). Available from: http://www.cmap.polytechnique.fr/preprint/repository/746.pdf

[5]

A. A. Amosov, Stationary nonlinear nonlocal problem of radiative-conductive heat transfer in a system of opaque bodies with properties depending on radiation frequency, J. Math. Sci., 164 (2010), 309-344.

[6]

N. Bakhvalov and G. Panasenko, "Homogenisation: Averaging Processes in Periodic Media," vol. 36 of Mathematics and its Applications (Soviet Series). Kluwer Academic Publishers Group, Dordrecht, 1989. Mathematical problems in the mechanics of composite materials, Translated from the Russian by D. Leĭtes.

[7]

A. Bensoussan, J. L. Lions and G. Papanicolaou, "Asymptotic analysis for periodic structures," vol. 5 of Studies in Mathematics and its Applications. North-Holland Publishing Co., Amsterdam, 1978.

[8]

J. F. Bourgat, "Numerical Experiments of the Homogenization Method for Operators with Periodic Coefficients," Computing methods in applied sciences and engineering (Proc. Third Internat. Sympos., Versailles, 1977), I, pp. 330-356, Lecture Notes in Math., 704, Springer, Berlin, 1979.

[9]

J. F. Bourgat and A. Dervieux, "Méthode D'homogénéisation des Opérateurs à Coefficients Périodiques: Étude des Correcteurs Provenant du Développement Asymptotique," IRIA-LABORIA, Rapport 278, 1978.

[10]

S. Boyaval, Reduced-bases approach for homogenization beyond the periodic setting, Multiscale Model. Simul., 7 (2008), 466-494.

[11]

J. Casado-Diaz, The asymptotic behaviour near the boundary of periodic homogenization problems via two-scale convergence, Proc. Roy. Soc. Edinburgh Sect. A, 138 (2008), 33-66.

[12]

, Cast3M. Available from: http://www-cast3m.cea.fr.

[13]

S. Chandrasekhar, "Radiative Transfer," Dover Publications Inc., New York, 1960.

[14]

K. Cherednichenko and V. Smyshlyaev, On full two-scale expansion of the solutions of nonlinear periodic rapidly oscillating problems and higher-order homogenised variational problems, Arch. Ration. Mech. Anal., 174 (2004), 385-442.

[15]

D. Cioranescu and P. Donato, "An Introduction to Homogenization," vol. 17 of Oxford Lecture Series in Mathematics and its Applications. The Clarendon Press Oxford University Press, New York, 1999.

[16]

CEA e-den, "Les réacteurs Nucléaires à Caloporteur Gaz," CEA Saclay et Le Moniteur Editions. Monographie Den, 2006. Available from: http://nucleaire.cea.fr/fr/publications/pdf/M0-fr.pdf.

[17]

C. Conca, R. Orive and M. Vanninathan, First and second corrector in homogenization by Bloch waves, Bol. Soc. Esp. Mat. Apl. S$\vec{\ e}$MA, (2008), 61-69.

[18]

D. Gérard-Varet and N. Masmoudi, Homogenization in polygonal domains, J. Eur. Math. Soc., 13 (2011), 1477-1503.

[19]

D. Gérard-Varet and N. Masmoudi, Homogenization and boundary layer, to appear in Acta Mathematica.

[20]

G. Griso, Interior error estimate for periodic homogenization, Anal. Appl. (Singap.), 4 (2006), 61-79.

[21]

Z. Habibi, Homogenization of a conductive-radiative heat transfer problem, the contribution of a second order corrector, ESAIM: Proc. Volume 35, Congrés National de Mathématiques Appliquées et Industrielles, 228-233, March2012. Available from: http://dx.doi.org/10.1051/proc/201235019.

[22]

Z. Habibi, Homogénéisation et convergence à deux échelles lors d'échanges thermiques stationnaires et transitoires dans un cœur de réacteur à caloporteur gaz, PhD thesis, Ecole Polytechnique, 2011. Available from: http://tel.archives-ouvertes.fr/tel-00695638

[23]

P. S. Heckbert., "Simulating Global Illumination Using Adaptive Meshing," PhD thesis, UC Berkeley, 1991.

[24]

V. H. Hoang and Ch. Schwab, High-dimensional finite elements for elliptic problems with multiple scales, Multiscale Model. Simul. 3 (2004/05), 168-194.

[25]

U. Hornung, "Homogenization and Porous Media," vol. 6 of "Interdisciplinary Applied Mathematics," Springer-Verlag, New York, 1997.

[26]

J. R. Howell, "A Catalogue of Radiation Heat Transfer Factors," The university of Texas at Austin, Austin, Texas, 3 edition, (2010). Available from: http://www.engr.uky.edu/rtl/Catalog/.

[27]

V. V. Jikov, S. M. Kozlov and O. A. Oleinik, "Homogenization of Differential Operators and Integral Functionals," Springer Verlag, 1994.

[28]

C. Kenig, F. Lin and Z. Shen, Convergence rates in $L^2$ for elliptic homogenization problems, Arch. Ration. Mech. Anal. 203 (2012), 1009-1036, arXiv:1103.0023.

[29]

M. Laitinen and T. Tiihonen, Conductive-radiative heat transfer in grey materials, Quart. Appl. Math., 59 (2001), 737-768.

[30]

J. L. Lions, "Some Methods in the Mathematical Analysis of Systems and Their Control," Kexue Chubanshe (Science Press), Beijing, 1981.

[31]

Y. Maday, A. T. Patera and G. Turinici, Global a priori convergence theory for reduced-basis approximations of single-parameter symmetric coercive elliptic partial differential equations, C. R. Math. Acad. Sci. Paris, 335 (2002), 289-294.

[32]

F. M. Modest, "Radiative Heat Transfer," Academic Press, 2 edition, 2003.

[33]

S. Moskow and M. Vogelius, First-order corrections to the homogenised eigenvalues of aperiodic composite medium. A convergence proof, Proc. Roy. Soc. Edinburgh Sect. A, 127 (1997), 1263-1299.

[34]

G. Nguetseng, A general convergence result for a functional related to the theory of homogenization, SIAM J. Math. Anal., 20 (1989), 608-623.

[35]

D. Onofrei and B. Vernescu, Error estimates for periodic homogenization with non-smooth coefficients, Asymptot. Anal., 54 (2007), 103-123.

[36]

E. Sanchez-Palencia, "Nonhomogeneous Media and Vibration Theory," vol. 127 of Lecture Notes in Physics, Springer-Verlag, Berlin, 1980.

[37]

L. Tartar, "The General Theory of Homogenization. A Personalized Introduction, Lecture Notes of the Unione Matematica Italiana," Springer Verlag, Berlin; UMI, Bologna, 7 edition, 2009.

[38]

T. Tiihonen, Stefan-boltzman radiation on non-convex surfaces, Math. Methods Appl. Sci., 20 (1997), 47-57.

[39]

T. Tiihonen, Finite element approximation of nonlocal heat radiation problems, Math. Models Methods Appl. Sci., 8 (1998), 1071-1089.

[1]

Zhiqiang Yang, Junzhi Cui, Qiang Ma. The second-order two-scale computation for integrated heat transfer problem with conduction, convection and radiation in periodic porous materials. Discrete and Continuous Dynamical Systems - B, 2014, 19 (3) : 827-848. doi: 10.3934/dcdsb.2014.19.827

[2]

Martin Frank, Cory D. Hauck, Edgar Olbrant. Perturbed, entropy-based closure for radiative transfer. Kinetic and Related Models, 2013, 6 (3) : 557-587. doi: 10.3934/krm.2013.6.557

[3]

J-F. Clouët, R. Sentis. Milne problem for non-grey radiative transfer. Kinetic and Related Models, 2009, 2 (2) : 345-362. doi: 10.3934/krm.2009.2.345

[4]

Yasir Ali, Arshad Alam Khan. Exact solution of magnetohydrodynamic slip flow and heat transfer over an oscillating and translating porous plate. Discrete and Continuous Dynamical Systems - S, 2018, 11 (4) : 595-606. doi: 10.3934/dcdss.2018034

[5]

Andriy Bondarenko, Guy Bouchitté, Luísa Mascarenhas, Rajesh Mahadevan. Rate of convergence for correctors in almost periodic homogenization. Discrete and Continuous Dynamical Systems, 2005, 13 (2) : 503-514. doi: 10.3934/dcds.2005.13.503

[6]

Eduard Marušić-Paloka, Igor Pažanin. Homogenization and singular perturbation in porous media. Communications on Pure and Applied Analysis, 2021, 20 (2) : 533-545. doi: 10.3934/cpaa.2020279

[7]

Arnaud Debussche, Sylvain De Moor, Julien Vovelle. Diffusion limit for the radiative transfer equation perturbed by a Wiener process. Kinetic and Related Models, 2015, 8 (3) : 467-492. doi: 10.3934/krm.2015.8.467

[8]

Martin Frank, Benjamin Seibold. Optimal prediction for radiative transfer: A new perspective on moment closure. Kinetic and Related Models, 2011, 4 (3) : 717-733. doi: 10.3934/krm.2011.4.717

[9]

Shixin Xu, Xingye Yue. Homogenization of thermal-hydro-mass transfer processes. Discrete and Continuous Dynamical Systems - S, 2015, 8 (1) : 55-76. doi: 10.3934/dcdss.2015.8.55

[10]

María Anguiano, Renata Bunoiu. Homogenization of Bingham flow in thin porous media. Networks and Heterogeneous Media, 2020, 15 (1) : 87-110. doi: 10.3934/nhm.2020004

[11]

Patrizia Donato, Florian Gaveau. Homogenization and correctors for the wave equation in non periodic perforated domains. Networks and Heterogeneous Media, 2008, 3 (1) : 97-124. doi: 10.3934/nhm.2008.3.97

[12]

Zhanying Yang. Homogenization and correctors for the hyperbolic problems with imperfect interfaces via the periodic unfolding method. Communications on Pure and Applied Analysis, 2014, 13 (1) : 249-272. doi: 10.3934/cpaa.2014.13.249

[13]

I-Kun Chen, Daisuke Kawagoe. Propagation of boundary-induced discontinuity in stationary radiative transfer and its application to the optical tomography. Inverse Problems and Imaging, 2019, 13 (2) : 337-351. doi: 10.3934/ipi.2019017

[14]

Graham W. Alldredge, Ruo Li, Weiming Li. Approximating the $M_2$ method by the extended quadrature method of moments for radiative transfer in slab geometry. Kinetic and Related Models, 2016, 9 (2) : 237-249. doi: 10.3934/krm.2016.9.237

[15]

Poonam Savsani, Mohamed A. Tawhid. Discrete heat transfer search for solving travelling salesman problem. Mathematical Foundations of Computing, 2018, 1 (3) : 265-280. doi: 10.3934/mfc.2018012

[16]

Eberhard Bänsch, Steffen Basting, Rolf Krahl. Numerical simulation of two-phase flows with heat and mass transfer. Discrete and Continuous Dynamical Systems, 2015, 35 (6) : 2325-2347. doi: 10.3934/dcds.2015.35.2325

[17]

Youcef Amirat, Kamel Hamdache. Weak solutions to stationary equations of heat transfer in a magnetic fluid. Communications on Pure and Applied Analysis, 2019, 18 (2) : 709-734. doi: 10.3934/cpaa.2019035

[18]

Youcef Amirat, Kamel Hamdache. Strong solutions to the equations of flow and heat transfer in magnetic fluids with internal rotations. Discrete and Continuous Dynamical Systems, 2013, 33 (8) : 3289-3320. doi: 10.3934/dcds.2013.33.3289

[19]

Alexei Heintz, Andrey Piatnitski. Osmosis for non-electrolyte solvents in permeable periodic porous media. Networks and Heterogeneous Media, 2016, 11 (3) : 471-499. doi: 10.3934/nhm.2016005

[20]

Yong Hong Wu, B. Wiwatanapataphee. Modelling of turbulent flow and multi-phase heat transfer under electromagnetic force. Discrete and Continuous Dynamical Systems - B, 2007, 8 (3) : 695-706. doi: 10.3934/dcdsb.2007.8.695

2020 Impact Factor: 1.327

Metrics

  • PDF downloads (159)
  • HTML views (0)
  • Cited by (12)

Other articles
by authors

[Back to Top]