-
Previous Article
Optimally swimming stokesian robots
- DCDS-B Home
- This Issue
- Next Article
Constrained energy minimization and ground states for NLS with point defects
1. | Dipartimento di Scienze Matematiche, Politecnico di Torino, C.so Duca degli Abruzzi 24, 10129 Torino, Italy |
2. | Dipartimento di Matematica e Applicazioni, Università di Milano Bicocca, via R. Cozzi 53, 20125 Milano, Italy |
3. | Dipartimento di Matematica, Università di Pisa, Largo B. Pontecorvo, 56100 Pisa, Italy |
References:
[1] |
R. Adami, C. Cacciapuoti, D. Finco and D. Noja, Fast solitons on star graphs, Rev. Math. Phys., 23 (2011), 409-451.
doi: 10.1142/S0129055X11004345. |
[2] |
R. Adami, C. Cacciapuoti, D. Finco and D. Noja, On the structure of critical energy levels for the cubic focusing NLS on star graphs, J. Phys. A: Math. Theor., 45 (2012), 7pp. 192001.
doi: 10.1088/1751-8113/45/19/192001. |
[3] |
R. Adami, C. Cacciapuoti, D. Finco and D. Noja, Stationary states of NLS on star graphs, EPL, 100 (2012), 10003. |
[4] |
R. Adami and D. Noja, Existence of dynamics for a 1-d NLS equation perturbed with a generalized point defect, J. Phys. A Math. Theor., 42 (2009), 495302.
doi: 10.1088/1751-8113/42/49/495302. |
[5] |
R. Adami and D. Noja, Stability and symmetry breaking bifurcation for the ground states of a NLS equation with a $\delta'$ interaction, Commun. Math. Phys., 318 (2013), 247-289.
doi: 10.1007/s00220-012-1597-6. |
[6] |
R. Adami, D. Noja and A. Sacchetti, On the mathematical description of the effective behaviour of one-dimensional Bose-Einstein condensates with defects, in "Bose-Einstein Condensates: Theory, Characteristics, and Current Research", Nova Publishing, New York (2010). |
[7] |
N. Akhiezer and I. Glazman, "Theory of Linear Operators in Hilbert Spaces," Ungar, New York, 1963. |
[8] |
S. Albeverio, Z. Brzeźniak and L. Dabrowski, Fundamental solutions of the Heat and Schrödinger Equations with point interaction, J. Func. An., 130 (1995), 220-254.
doi: 10.1006/jfan.1995.1068. |
[9] |
S. Albeverio, F. Gesztesy, R. HΦgh-Krohn and H. Holden, "Solvable Models in Quantum Mechanics, $2^{nd}$ ed., with an Appendix of P. Exner," AMS, Providence, 2005. |
[10] |
S. Albeverio and P. Kurasov, "Singular Perturbations of Differential Operators," Cambridge University Press, 2000.
doi: 10.1017/CBO9780511758904. |
[11] |
J. Bellazzini and N. Visciglia, On the orbital stability for a class of nonautonmous NLS, Indiana Univ. Math. J., 59 (2010), 1211-1230.
doi: 10.1512/iumj.2010.59.3907. |
[12] |
H. Berestycki and P.-L. Lions, Nonlinear scalar field equations, I - Existence of a ground state, Arch. Rat. Mech. Anal., 82 (1983), 313-345.
doi: 10.1007/BF00250555. |
[13] |
J. Blank, P. Exner and M. Havlicek, "Hilbert Spaces Operators in Quantum Physics," Springer, New York, 2008. |
[14] |
C. Bonanno, M. Ghimenti and M. Squassina, Soliton dynamics of NLS with singular potentials, preprint arXiv:1206.1832 (2012). |
[15] |
H. Brezis and E. H. Lieb, A relation between pointwise convergence of functions and convergence of functionals, Proc. Amer. Math. Soc., 88 (1983), 486-490.
doi: 10.2307/2044999. |
[16] |
D. Cao Xiang and A. B. Malomed, Soliton defect collisions in the nonlinear Schr\"odinger equation, Phys. Lett. A, 206 (1985), 177-182.
doi: 10.1016/0375-9601(95)00611-6. |
[17] |
T. Cazenave, "Semilinear Schrödinger Equations," 10 Courant Lecture Notes in Mathematics, AMS, Providence, 2003. |
[18] |
T. Cazenave and P.-L. Lions, Orbital stability of standing waves for some nonlinear Schrödinger equations, Comm. Math. Phys., 85 (1982), 549-561. |
[19] |
T. Cheon and T. Shigehara, Realizing discontinuous wave functions with renormalized short-range potentials, Phys. Lett. A, 243 (1998), 111-116. |
[20] |
K. Datchev and J. Holmer, Fast soliton scattering by attractive delta impurities, Comm. Part. Diff. Eq., 34 (2009), 1074-1113.
doi: 10.1080/03605300903076831. |
[21] |
P. Deift and J. Park, Long-Time Asymptotics for solutions of the NLS equation with a delta potential and even initial data, Int. Math. Res. Notices, 24 (2011), 5505-5624.
doi: 10.1007/s11005-010-0458-5. |
[22] |
P. Exner and P. Grosse, Some properties of the one-dimensional generalized point interactions (a torso), preprint mp-arc 99-390, arXiv:math-ph/9910029, (1999). |
[23] |
P. Exner, H. Neidhardt and V. A. Zagrebnov, Potential approximations to a $\delta'$: An inverse Klauder phenomenon with norm-resolvent convergence, Comm. Math. Phys., 224 (2001), 593-612.
doi: 10.1007/s002200100567. |
[24] |
R. Fukuizumi and L. Jeanjean, Stability of standing waves for a nonlinear Schrödinger equation with a repulsive Dirac delta potential, Disc. Cont. Dyn. Syst. (A), 21 (2008), 129-144.
doi: 10.3934/dcds.2008.21.121. |
[25] |
R. Fukuizumi, M. Ohta and T. Ozawa, Nonlinear Schrödinger equation with a point defect, Ann. Inst. H. Poincaré, Anal. Non Linéaire, 25 (2008), 837-845.
doi: 10.1016/j.anihpc.2007.03.004. |
[26] |
Y. Furuhashi, M. Hirokawa, K. Nakahara and Y. Shikano, Role of a phase factor in the boundary condition of a one-dimensional junction, J. Phys. A Math. Theor., 43 (2010), 354010.
doi: 10.1088/1751-8113/43/35/354010. |
[27] |
Yu. D. Golovaty and R. O. Hryniv, On norm resolvent convergence of Schrödinger operators with $\delta'$-like potentials, J. Phys. A. Math. Theor., 44 (2011), 049802; Corrigendum J. Phys. A. Math. Theor., 44 (2011), 049802.
doi: 10.1088/1751-8113/44/4/049802. |
[28] |
R. H. Goodman, P. J. Holmes and M. I. Weinstein, Strong NLS soliton-defect interactions, {Physica D.}, 192 (2004), 215-248.
doi: 10.1016/j.physd.2004.01.021. |
[29] |
M. Grillakis, J. Shatah and W. Strauss, Stability theory of solitary waves in the presence of symmetry - I, J. Func. An., 74 (1987), 160-197.
doi: 10.1016/0022-1236(87)90044-9. |
[30] |
M. Grillakis, J. Shatah and W. Strauss, Stability theory of solitary waves in the presence of symmetry - II, J. Func. An., 94 (1990), 308-348.
doi: 10.1016/0022-1236(90)90016-E. |
[31] |
J. Holmer, J. Marzuola and M. Zworski, Fast soliton scattering by delta impurities, Comm. Math. Phys., 274 (2007), 187-216.
doi: 10.1007/s00220-007-0261-z. |
[32] |
J. Holmer and M. Zworski, Breathing patterns in nonlinear relaxation, Nonlinearity, 22 (2009), 1259-1301.
doi: 10.1088/0951-7715/22/6/002. |
[33] |
S. Le Coz, R. Fukuizumi, G. Fibich, Y. Ksherim and Y. Sivan, Instability of bound states of a nonlinear Schrödinger equation with a Dirac potential, Physica D, 237 (2008), 1103-1128.
doi: 10.1016/j.physd.2007.12.004. |
[34] |
Y. Linzon, R. Morandotti, V. Aimez, V. Ares and S. Bar-Ad, Nonlinear scattering and trapping by local photonic potentials, Phys. Rev. Lett., 99 (2007), 133901. |
[35] |
F. Prinari and N. Visciglia, On a minimization problem involving the critical Sobolev exponent, Advanced Nonlinear Studies, 7 (2007), 551-564. |
[36] |
M. Reed and B. Simon, "Methods of Modern Mathematical Physics - Vol I," Academic Press, 1980. |
[37] |
M. Weinstein, Modulational stability of ground states of nonlinear Schroedinger equations, SIAM J. Math. Anal., 16 (1985), 472-491.
doi: 10.1137/0516034. |
[38] |
M. Weinstein, Lyapunov stability of ground states of nonlinear dispersive evolution equations, Comm. Pure Appl. Math., 39 (1986), 51-68.
doi: 10.1002/cpa.3160390103. |
[39] |
D. Witthaut, S. Mossmann and H. J. Korsch, Bound and resonance states of the nonlinear Schrödinger equation in simple model systems, J. Phys. A Math. Gen., 38 (2005), 1777-1702.
doi: 10.1088/0305-4470/38/8/013. |
[40] |
A. V. Zolotaryuk, P. L. Christiansen and S. V. Iermakova, Scattering properties of point dipole interactions, J. Phys. A Math. Gen., 39 (2006), 9329-9338.
doi: 10.1088/0305-4470/39/29/023. |
[41] |
V. A. Zolotaryuk, Boundary conditions for the states with resonant tunnelling across the $\delta'$-potential, Phys. Lett. A, 374 (2010), 1636-1641.
doi: 10.1016/j.physleta.2010.02.005. |
show all references
References:
[1] |
R. Adami, C. Cacciapuoti, D. Finco and D. Noja, Fast solitons on star graphs, Rev. Math. Phys., 23 (2011), 409-451.
doi: 10.1142/S0129055X11004345. |
[2] |
R. Adami, C. Cacciapuoti, D. Finco and D. Noja, On the structure of critical energy levels for the cubic focusing NLS on star graphs, J. Phys. A: Math. Theor., 45 (2012), 7pp. 192001.
doi: 10.1088/1751-8113/45/19/192001. |
[3] |
R. Adami, C. Cacciapuoti, D. Finco and D. Noja, Stationary states of NLS on star graphs, EPL, 100 (2012), 10003. |
[4] |
R. Adami and D. Noja, Existence of dynamics for a 1-d NLS equation perturbed with a generalized point defect, J. Phys. A Math. Theor., 42 (2009), 495302.
doi: 10.1088/1751-8113/42/49/495302. |
[5] |
R. Adami and D. Noja, Stability and symmetry breaking bifurcation for the ground states of a NLS equation with a $\delta'$ interaction, Commun. Math. Phys., 318 (2013), 247-289.
doi: 10.1007/s00220-012-1597-6. |
[6] |
R. Adami, D. Noja and A. Sacchetti, On the mathematical description of the effective behaviour of one-dimensional Bose-Einstein condensates with defects, in "Bose-Einstein Condensates: Theory, Characteristics, and Current Research", Nova Publishing, New York (2010). |
[7] |
N. Akhiezer and I. Glazman, "Theory of Linear Operators in Hilbert Spaces," Ungar, New York, 1963. |
[8] |
S. Albeverio, Z. Brzeźniak and L. Dabrowski, Fundamental solutions of the Heat and Schrödinger Equations with point interaction, J. Func. An., 130 (1995), 220-254.
doi: 10.1006/jfan.1995.1068. |
[9] |
S. Albeverio, F. Gesztesy, R. HΦgh-Krohn and H. Holden, "Solvable Models in Quantum Mechanics, $2^{nd}$ ed., with an Appendix of P. Exner," AMS, Providence, 2005. |
[10] |
S. Albeverio and P. Kurasov, "Singular Perturbations of Differential Operators," Cambridge University Press, 2000.
doi: 10.1017/CBO9780511758904. |
[11] |
J. Bellazzini and N. Visciglia, On the orbital stability for a class of nonautonmous NLS, Indiana Univ. Math. J., 59 (2010), 1211-1230.
doi: 10.1512/iumj.2010.59.3907. |
[12] |
H. Berestycki and P.-L. Lions, Nonlinear scalar field equations, I - Existence of a ground state, Arch. Rat. Mech. Anal., 82 (1983), 313-345.
doi: 10.1007/BF00250555. |
[13] |
J. Blank, P. Exner and M. Havlicek, "Hilbert Spaces Operators in Quantum Physics," Springer, New York, 2008. |
[14] |
C. Bonanno, M. Ghimenti and M. Squassina, Soliton dynamics of NLS with singular potentials, preprint arXiv:1206.1832 (2012). |
[15] |
H. Brezis and E. H. Lieb, A relation between pointwise convergence of functions and convergence of functionals, Proc. Amer. Math. Soc., 88 (1983), 486-490.
doi: 10.2307/2044999. |
[16] |
D. Cao Xiang and A. B. Malomed, Soliton defect collisions in the nonlinear Schr\"odinger equation, Phys. Lett. A, 206 (1985), 177-182.
doi: 10.1016/0375-9601(95)00611-6. |
[17] |
T. Cazenave, "Semilinear Schrödinger Equations," 10 Courant Lecture Notes in Mathematics, AMS, Providence, 2003. |
[18] |
T. Cazenave and P.-L. Lions, Orbital stability of standing waves for some nonlinear Schrödinger equations, Comm. Math. Phys., 85 (1982), 549-561. |
[19] |
T. Cheon and T. Shigehara, Realizing discontinuous wave functions with renormalized short-range potentials, Phys. Lett. A, 243 (1998), 111-116. |
[20] |
K. Datchev and J. Holmer, Fast soliton scattering by attractive delta impurities, Comm. Part. Diff. Eq., 34 (2009), 1074-1113.
doi: 10.1080/03605300903076831. |
[21] |
P. Deift and J. Park, Long-Time Asymptotics for solutions of the NLS equation with a delta potential and even initial data, Int. Math. Res. Notices, 24 (2011), 5505-5624.
doi: 10.1007/s11005-010-0458-5. |
[22] |
P. Exner and P. Grosse, Some properties of the one-dimensional generalized point interactions (a torso), preprint mp-arc 99-390, arXiv:math-ph/9910029, (1999). |
[23] |
P. Exner, H. Neidhardt and V. A. Zagrebnov, Potential approximations to a $\delta'$: An inverse Klauder phenomenon with norm-resolvent convergence, Comm. Math. Phys., 224 (2001), 593-612.
doi: 10.1007/s002200100567. |
[24] |
R. Fukuizumi and L. Jeanjean, Stability of standing waves for a nonlinear Schrödinger equation with a repulsive Dirac delta potential, Disc. Cont. Dyn. Syst. (A), 21 (2008), 129-144.
doi: 10.3934/dcds.2008.21.121. |
[25] |
R. Fukuizumi, M. Ohta and T. Ozawa, Nonlinear Schrödinger equation with a point defect, Ann. Inst. H. Poincaré, Anal. Non Linéaire, 25 (2008), 837-845.
doi: 10.1016/j.anihpc.2007.03.004. |
[26] |
Y. Furuhashi, M. Hirokawa, K. Nakahara and Y. Shikano, Role of a phase factor in the boundary condition of a one-dimensional junction, J. Phys. A Math. Theor., 43 (2010), 354010.
doi: 10.1088/1751-8113/43/35/354010. |
[27] |
Yu. D. Golovaty and R. O. Hryniv, On norm resolvent convergence of Schrödinger operators with $\delta'$-like potentials, J. Phys. A. Math. Theor., 44 (2011), 049802; Corrigendum J. Phys. A. Math. Theor., 44 (2011), 049802.
doi: 10.1088/1751-8113/44/4/049802. |
[28] |
R. H. Goodman, P. J. Holmes and M. I. Weinstein, Strong NLS soliton-defect interactions, {Physica D.}, 192 (2004), 215-248.
doi: 10.1016/j.physd.2004.01.021. |
[29] |
M. Grillakis, J. Shatah and W. Strauss, Stability theory of solitary waves in the presence of symmetry - I, J. Func. An., 74 (1987), 160-197.
doi: 10.1016/0022-1236(87)90044-9. |
[30] |
M. Grillakis, J. Shatah and W. Strauss, Stability theory of solitary waves in the presence of symmetry - II, J. Func. An., 94 (1990), 308-348.
doi: 10.1016/0022-1236(90)90016-E. |
[31] |
J. Holmer, J. Marzuola and M. Zworski, Fast soliton scattering by delta impurities, Comm. Math. Phys., 274 (2007), 187-216.
doi: 10.1007/s00220-007-0261-z. |
[32] |
J. Holmer and M. Zworski, Breathing patterns in nonlinear relaxation, Nonlinearity, 22 (2009), 1259-1301.
doi: 10.1088/0951-7715/22/6/002. |
[33] |
S. Le Coz, R. Fukuizumi, G. Fibich, Y. Ksherim and Y. Sivan, Instability of bound states of a nonlinear Schrödinger equation with a Dirac potential, Physica D, 237 (2008), 1103-1128.
doi: 10.1016/j.physd.2007.12.004. |
[34] |
Y. Linzon, R. Morandotti, V. Aimez, V. Ares and S. Bar-Ad, Nonlinear scattering and trapping by local photonic potentials, Phys. Rev. Lett., 99 (2007), 133901. |
[35] |
F. Prinari and N. Visciglia, On a minimization problem involving the critical Sobolev exponent, Advanced Nonlinear Studies, 7 (2007), 551-564. |
[36] |
M. Reed and B. Simon, "Methods of Modern Mathematical Physics - Vol I," Academic Press, 1980. |
[37] |
M. Weinstein, Modulational stability of ground states of nonlinear Schroedinger equations, SIAM J. Math. Anal., 16 (1985), 472-491.
doi: 10.1137/0516034. |
[38] |
M. Weinstein, Lyapunov stability of ground states of nonlinear dispersive evolution equations, Comm. Pure Appl. Math., 39 (1986), 51-68.
doi: 10.1002/cpa.3160390103. |
[39] |
D. Witthaut, S. Mossmann and H. J. Korsch, Bound and resonance states of the nonlinear Schrödinger equation in simple model systems, J. Phys. A Math. Gen., 38 (2005), 1777-1702.
doi: 10.1088/0305-4470/38/8/013. |
[40] |
A. V. Zolotaryuk, P. L. Christiansen and S. V. Iermakova, Scattering properties of point dipole interactions, J. Phys. A Math. Gen., 39 (2006), 9329-9338.
doi: 10.1088/0305-4470/39/29/023. |
[41] |
V. A. Zolotaryuk, Boundary conditions for the states with resonant tunnelling across the $\delta'$-potential, Phys. Lett. A, 374 (2010), 1636-1641.
doi: 10.1016/j.physleta.2010.02.005. |
[1] |
Patricio Felmer, César Torres. Radial symmetry of ground states for a regional fractional Nonlinear Schrödinger Equation. Communications on Pure and Applied Analysis, 2014, 13 (6) : 2395-2406. doi: 10.3934/cpaa.2014.13.2395 |
[2] |
Yong Luo, Shu Zhang. Concentration behavior of ground states for $ L^2 $-critical Schrödinger Equation with a spatially decaying nonlinearity. Communications on Pure and Applied Analysis, 2022, 21 (4) : 1481-1504. doi: 10.3934/cpaa.2022026 |
[3] |
Alex H. Ardila, Mykael Cardoso. Blow-up solutions and strong instability of ground states for the inhomogeneous nonlinear Schrödinger equation. Communications on Pure and Applied Analysis, 2021, 20 (1) : 101-119. doi: 10.3934/cpaa.2020259 |
[4] |
Scipio Cuccagna, Masaya Maeda. A survey on asymptotic stability of ground states of nonlinear Schrödinger equations II. Discrete and Continuous Dynamical Systems - S, 2021, 14 (5) : 1693-1716. doi: 10.3934/dcdss.2020450 |
[5] |
Zupei Shen, Zhiqing Han, Qinqin Zhang. Ground states of nonlinear Schrödinger equations with fractional Laplacians. Discrete and Continuous Dynamical Systems - S, 2019, 12 (7) : 2115-2125. doi: 10.3934/dcdss.2019136 |
[6] |
Chuangye Liu, Zhi-Qiang Wang. A complete classification of ground-states for a coupled nonlinear Schrödinger system. Communications on Pure and Applied Analysis, 2017, 16 (1) : 115-130. doi: 10.3934/cpaa.2017005 |
[7] |
Andrew Comech, Scipio Cuccagna. On asymptotic stability of ground states of some systems of nonlinear Schrödinger equations. Discrete and Continuous Dynamical Systems, 2021, 41 (3) : 1225-1270. doi: 10.3934/dcds.2020316 |
[8] |
Alex H. Ardila. Stability of ground states for logarithmic Schrödinger equation with a $δ^{\prime}$-interaction. Evolution Equations and Control Theory, 2017, 6 (2) : 155-175. doi: 10.3934/eect.2017009 |
[9] |
Xudong Shang, Jihui Zhang. Multiplicity and concentration of positive solutions for fractional nonlinear Schrödinger equation. Communications on Pure and Applied Analysis, 2018, 17 (6) : 2239-2259. doi: 10.3934/cpaa.2018107 |
[10] |
Noriyoshi Fukaya. Uniqueness and nondegeneracy of ground states for nonlinear Schrödinger equations with attractive inverse-power potential. Communications on Pure and Applied Analysis, 2021, 20 (1) : 121-143. doi: 10.3934/cpaa.2020260 |
[11] |
Eugenio Montefusco, Benedetta Pellacci, Marco Squassina. Energy convexity estimates for non-degenerate ground states of nonlinear 1D Schrödinger systems. Communications on Pure and Applied Analysis, 2010, 9 (4) : 867-884. doi: 10.3934/cpaa.2010.9.867 |
[12] |
Dongdong Qin, Xianhua Tang, Qingfang Wu. Ground states of nonlinear Schrödinger systems with periodic or non-periodic potentials. Communications on Pure and Applied Analysis, 2019, 18 (3) : 1261-1280. doi: 10.3934/cpaa.2019061 |
[13] |
Yongpeng Chen, Yuxia Guo, Zhongwei Tang. Concentration of ground state solutions for quasilinear Schrödinger systems with critical exponents. Communications on Pure and Applied Analysis, 2019, 18 (5) : 2693-2715. doi: 10.3934/cpaa.2019120 |
[14] |
Wided Kechiche. Regularity of the global attractor for a nonlinear Schrödinger equation with a point defect. Communications on Pure and Applied Analysis, 2017, 16 (4) : 1233-1252. doi: 10.3934/cpaa.2017060 |
[15] |
Wided Kechiche. Global attractor for a nonlinear Schrödinger equation with a nonlinearity concentrated in one point. Discrete and Continuous Dynamical Systems - S, 2021, 14 (8) : 3027-3042. doi: 10.3934/dcdss.2021031 |
[16] |
Guoyuan Chen, Youquan Zheng. Concentration phenomenon for fractional nonlinear Schrödinger equations. Communications on Pure and Applied Analysis, 2014, 13 (6) : 2359-2376. doi: 10.3934/cpaa.2014.13.2359 |
[17] |
Zhouxin Li, Yimin Zhang. Ground states for a class of quasilinear Schrödinger equations with vanishing potentials. Communications on Pure and Applied Analysis, 2021, 20 (2) : 933-954. doi: 10.3934/cpaa.2020298 |
[18] |
Chang-Lin Xiang. Remarks on nondegeneracy of ground states for quasilinear Schrödinger equations. Discrete and Continuous Dynamical Systems, 2016, 36 (10) : 5789-5800. doi: 10.3934/dcds.2016054 |
[19] |
Rong Cheng, Jun Wang. Existence of ground states for Schrödinger-Poisson system with nonperiodic potentials. Discrete and Continuous Dynamical Systems - B, 2022 doi: 10.3934/dcdsb.2021317 |
[20] |
Jian Zhang, Shihui Zhu, Xiaoguang Li. Rate of $L^2$-concentration of the blow-up solution for critical nonlinear Schrödinger equation with potential. Mathematical Control and Related Fields, 2011, 1 (1) : 119-127. doi: 10.3934/mcrf.2011.1.119 |
2020 Impact Factor: 1.327
Tools
Metrics
Other articles
by authors
[Back to Top]