• Previous Article
    Finite-time quenching of competing species with constrained boundary evaporation
  • DCDS-B Home
  • This Issue
  • Next Article
    The existence of weak solutions to immiscible compressible two-phase flow in porous media: The case of fields with different rock-types
July  2013, 18(5): 1253-1273. doi: 10.3934/dcdsb.2013.18.1253

Analysis and numerical approximations of equations of nonlinear poroelasticity

1. 

Department of Mathematics & Statistics, Auburn University, Auburn, AL 36849, United States, United States

Received  August 2012 Revised  January 2013 Published  March 2013

The equations of quasi-static poroelasticity which model flow through elastic porous media are considered. It is assumed that the hydraulic conductivity depends nonlinearly on the displacement (the dilatation) of the medium. The existence of a weak solution is proved using the modified Rothe's method. Numerical approximations of solutions by the finite element method are considered. Error estimates are obtained and numerical experiments are conducted to illustrate the theoretical results, and the efficiency and accuracy of the numerical method.
Citation: Yanzhao Cao, Song Chen, A. J. Meir. Analysis and numerical approximations of equations of nonlinear poroelasticity. Discrete and Continuous Dynamical Systems - B, 2013, 18 (5) : 1253-1273. doi: 10.3934/dcdsb.2013.18.1253
References:
[1]

Jean-Louis Auriault, Claude Boutin and Christian Geindreau, "Homogenization of Coupled Phenomena in Hetrogenous Media," ISTE Ltd., London, 2009.

[2]

H. Bryne and L. Preziosi, Modeling solid tumour growth using the theory of mixtures, Mathematical Medicine and Biology, 20 (2003), 341-366.

[3]

P. C. Carman, Permeability of saturated sands, soils and clays, Journal of Agricultural Science, 29 (1939), 263-273.

[4]

Robert Wayne Carroll and Ralph E. Showalter, "Singular and Degenerate Cauchy Problems," Academic Press [Harcourt Brace Jovanovich Publishers], New York, 1976. Mathematics in Science and Engineering, 127.

[5]

Olivier Coussy, "Poromechanics," John Wiley & Sons Ltd., Chichester, 2004.

[6]

Olivier Coussy, "Mechanics and Physics of Porous Solids," John Wiley & Sons Ltd., Chichester, 2010.

[7]

Alexandre Ern and Sébastien Meunier, A posteriori error analysis of Euler-Galerkin approximations to coupled elliptic-parabolic problems, M2AN Math. Model. Numer. Anal., 43 (2009), 353-375. doi: 10.1051/m2an:2008048.

[8]

Lawrence C. Evans, "Partial Differential Equations," 19 of Graduate Studies in Mathematics. American Mathematical Society, Providence, RI, second edition, 2010.

[9]

F. J. Gaspar, F. J. Lisbona and P. N. Vabishchevich, Finite difference schemes for poro-elastic problems, Comput. Methods Appl. Math., 2 (2002), 132-142.

[10]

F. J. Gaspar, F. J. Lisbona and P. N. Vabishchevich, A finite difference analysis of Biot's consolidation model, Appl. Numer. Math., 44 (2003), 487-506. doi: 10.1016/S0168-9274(02)00190-3.

[11]

Vivette Girault and Pierre-Arnaud Raviart, "Finite Element Methods for Navier-Stokes Equations," 5 of Springer Series in Computational Mathematics, Springer-Verlag, Berlin, 1986. Theory and Algorithms. doi: 10.1007/978-3-642-61623-5.

[12]

Kai Hiltunen, "Mathematical and Numerical Modelling of Consolidation Processes in Paper Machines," University of Jyväskylä Department of Mathematics, Jyväskylä, 1995.

[13]

J. Hudson, O. Stephansson, J. Andersson, C.-F. Tsang and L. Ling, Coupled t-h-m issues related to radioactive waste repository design and performance, International Journal of Rock Mechanics and Mining Sciences, 38 (2001), 143-161.

[14]

Jozef Kačur, "Method of Rothe in Evolution Equations," 80 of Teubner-Texte zur Mathematik [Teubner Texts in Mathematics], BSB B. G. Teubner Verlagsgesellschaft, Leipzig, 1985. With German, French and Russian Summaries.

[15]

J.-M. Kim and R. Parizek, Numerical simulation of the noordbergum effect resulting from groundwater pumping in a layered aquifer system, Journal of Hydrology, 202 (1997), 231-243.

[16]

Kenneth L. Kuttler, Jr., Time-dependent implicit evolution equations, Nonlinear Anal., 10 (1986), 447-463. doi: 10.1016/0362-546X(86)90050-7.

[17]

J.-L. Lions, "Quelques Méthodes de Résolution des Problèmes aux Limites non Linéaires," Dunod, 1969.

[18]

N. Lubick, Modeling complex, multiphase porous media systems, SIAM News, 35 April (2002).

[19]

A. Naumovich and F. J. Gaspar, On a multigrid solver for the three-dimensional Biot poroe- lasticity system in multilayered domains, Comput. Vis. Sci., 11 (2008), 77-87. doi: 10.1007/s00791-007-0059-8.

[20]

Phillip Joseph Phillips, "Finite Element Methods in Linear Poroelasticity: Theoretical and Computational Results," ProQuest LLC, Ann Arbor, MI, 2005. Thesis (Ph.D.)-The University of Texas at Austin.

[21]

Phillip Joseph Phillips and Mary F. Wheeler, A coupling of mixed and discontinuous Galerkin finite-element methods for poroelasticity, Comput. Geosci., 12 (2008), 417-435. doi: 10.1007/s10596-008-9082-1.

[22]

Karel Rektorys, "The Method of Discretization in Time and Partial Differential Equations," 4 of Mathematics and Its Applications (East European Series), D. Reidel Publishing Co., Dordrecht, 1982. Translated from the Czech by the author.

[23]

Michael Renardy and Robert C. Rogers, "An Introduction to Partial Differential Equations," 13 of Texts in Applied Mathematics, Springer-Verlag, New York, second edition, 2004.

[24]

T. Roose, P. A. Netti, L. Munn, Y. Boucher and R. Jain, Solid stress generated by spheroid growth estimated using a linear poroelastic model, Microvascular Research, 66 (2003), 204-212.

[25]

R. E. Showalter, "Monotone Operators in Banach Space and Nonlinear Partial Differential Equations," 49 of Mathematical Surveys and Monographs. American Mathematical Society, Providence, RI, 1997.

[26]

R. E. Showalter, Diffusion in poro-elastic media, J. Math. Anal. Appl., 251 (2000), 310-340. doi: 10.1006/jmaa.2000.7048.

[27]

A. Smillie, I. Sobey and Z. Molnar, A hydro-elastic model of hydrocephalus, Technical report, Oxford University Computing Laboratory: Numerical Analysis Group, (2004).

[28]

Vidar Thomée, "Galerkin Finite Element Methods for Parabolic Problems," 25 of Springer Series in Computational Mathematics. Springer-Verlag, Berlin, second edition, 2006.

[29]

Herbert F. Wang, "Theory of Linear Poroelasticity with Applications to Geomechanics and Hydrology," Princeton Series in Geophysics. Princeton University Press, Princeton, 2000.

[30]

A. Ženíšek, "Nonlinear Elliptic and Evolution Problems and Their Finite Element Approximations," Computational Mathematics and Applications. Academic Press Inc. [Harcourt Brace Jovanovich Publishers], London, 1990. With a foreword by P.-A. Raviart.

[31]

Alexander Ženíšek, Finite element methods for coupled thermoelasticity and coupled consolidation of clay, RAIRO Anal. Numér., 18 (1984), 183-205.

show all references

References:
[1]

Jean-Louis Auriault, Claude Boutin and Christian Geindreau, "Homogenization of Coupled Phenomena in Hetrogenous Media," ISTE Ltd., London, 2009.

[2]

H. Bryne and L. Preziosi, Modeling solid tumour growth using the theory of mixtures, Mathematical Medicine and Biology, 20 (2003), 341-366.

[3]

P. C. Carman, Permeability of saturated sands, soils and clays, Journal of Agricultural Science, 29 (1939), 263-273.

[4]

Robert Wayne Carroll and Ralph E. Showalter, "Singular and Degenerate Cauchy Problems," Academic Press [Harcourt Brace Jovanovich Publishers], New York, 1976. Mathematics in Science and Engineering, 127.

[5]

Olivier Coussy, "Poromechanics," John Wiley & Sons Ltd., Chichester, 2004.

[6]

Olivier Coussy, "Mechanics and Physics of Porous Solids," John Wiley & Sons Ltd., Chichester, 2010.

[7]

Alexandre Ern and Sébastien Meunier, A posteriori error analysis of Euler-Galerkin approximations to coupled elliptic-parabolic problems, M2AN Math. Model. Numer. Anal., 43 (2009), 353-375. doi: 10.1051/m2an:2008048.

[8]

Lawrence C. Evans, "Partial Differential Equations," 19 of Graduate Studies in Mathematics. American Mathematical Society, Providence, RI, second edition, 2010.

[9]

F. J. Gaspar, F. J. Lisbona and P. N. Vabishchevich, Finite difference schemes for poro-elastic problems, Comput. Methods Appl. Math., 2 (2002), 132-142.

[10]

F. J. Gaspar, F. J. Lisbona and P. N. Vabishchevich, A finite difference analysis of Biot's consolidation model, Appl. Numer. Math., 44 (2003), 487-506. doi: 10.1016/S0168-9274(02)00190-3.

[11]

Vivette Girault and Pierre-Arnaud Raviart, "Finite Element Methods for Navier-Stokes Equations," 5 of Springer Series in Computational Mathematics, Springer-Verlag, Berlin, 1986. Theory and Algorithms. doi: 10.1007/978-3-642-61623-5.

[12]

Kai Hiltunen, "Mathematical and Numerical Modelling of Consolidation Processes in Paper Machines," University of Jyväskylä Department of Mathematics, Jyväskylä, 1995.

[13]

J. Hudson, O. Stephansson, J. Andersson, C.-F. Tsang and L. Ling, Coupled t-h-m issues related to radioactive waste repository design and performance, International Journal of Rock Mechanics and Mining Sciences, 38 (2001), 143-161.

[14]

Jozef Kačur, "Method of Rothe in Evolution Equations," 80 of Teubner-Texte zur Mathematik [Teubner Texts in Mathematics], BSB B. G. Teubner Verlagsgesellschaft, Leipzig, 1985. With German, French and Russian Summaries.

[15]

J.-M. Kim and R. Parizek, Numerical simulation of the noordbergum effect resulting from groundwater pumping in a layered aquifer system, Journal of Hydrology, 202 (1997), 231-243.

[16]

Kenneth L. Kuttler, Jr., Time-dependent implicit evolution equations, Nonlinear Anal., 10 (1986), 447-463. doi: 10.1016/0362-546X(86)90050-7.

[17]

J.-L. Lions, "Quelques Méthodes de Résolution des Problèmes aux Limites non Linéaires," Dunod, 1969.

[18]

N. Lubick, Modeling complex, multiphase porous media systems, SIAM News, 35 April (2002).

[19]

A. Naumovich and F. J. Gaspar, On a multigrid solver for the three-dimensional Biot poroe- lasticity system in multilayered domains, Comput. Vis. Sci., 11 (2008), 77-87. doi: 10.1007/s00791-007-0059-8.

[20]

Phillip Joseph Phillips, "Finite Element Methods in Linear Poroelasticity: Theoretical and Computational Results," ProQuest LLC, Ann Arbor, MI, 2005. Thesis (Ph.D.)-The University of Texas at Austin.

[21]

Phillip Joseph Phillips and Mary F. Wheeler, A coupling of mixed and discontinuous Galerkin finite-element methods for poroelasticity, Comput. Geosci., 12 (2008), 417-435. doi: 10.1007/s10596-008-9082-1.

[22]

Karel Rektorys, "The Method of Discretization in Time and Partial Differential Equations," 4 of Mathematics and Its Applications (East European Series), D. Reidel Publishing Co., Dordrecht, 1982. Translated from the Czech by the author.

[23]

Michael Renardy and Robert C. Rogers, "An Introduction to Partial Differential Equations," 13 of Texts in Applied Mathematics, Springer-Verlag, New York, second edition, 2004.

[24]

T. Roose, P. A. Netti, L. Munn, Y. Boucher and R. Jain, Solid stress generated by spheroid growth estimated using a linear poroelastic model, Microvascular Research, 66 (2003), 204-212.

[25]

R. E. Showalter, "Monotone Operators in Banach Space and Nonlinear Partial Differential Equations," 49 of Mathematical Surveys and Monographs. American Mathematical Society, Providence, RI, 1997.

[26]

R. E. Showalter, Diffusion in poro-elastic media, J. Math. Anal. Appl., 251 (2000), 310-340. doi: 10.1006/jmaa.2000.7048.

[27]

A. Smillie, I. Sobey and Z. Molnar, A hydro-elastic model of hydrocephalus, Technical report, Oxford University Computing Laboratory: Numerical Analysis Group, (2004).

[28]

Vidar Thomée, "Galerkin Finite Element Methods for Parabolic Problems," 25 of Springer Series in Computational Mathematics. Springer-Verlag, Berlin, second edition, 2006.

[29]

Herbert F. Wang, "Theory of Linear Poroelasticity with Applications to Geomechanics and Hydrology," Princeton Series in Geophysics. Princeton University Press, Princeton, 2000.

[30]

A. Ženíšek, "Nonlinear Elliptic and Evolution Problems and Their Finite Element Approximations," Computational Mathematics and Applications. Academic Press Inc. [Harcourt Brace Jovanovich Publishers], London, 1990. With a foreword by P.-A. Raviart.

[31]

Alexander Ženíšek, Finite element methods for coupled thermoelasticity and coupled consolidation of clay, RAIRO Anal. Numér., 18 (1984), 183-205.

[1]

Dorothee Knees, Andreas Schröder. Computational aspects of quasi-static crack propagation. Discrete and Continuous Dynamical Systems - S, 2013, 6 (1) : 63-99. doi: 10.3934/dcdss.2013.6.63

[2]

Przemysław Górka. Quasi-static evolution of polyhedral crystals. Discrete and Continuous Dynamical Systems - B, 2008, 9 (2) : 309-320. doi: 10.3934/dcdsb.2008.9.309

[3]

Irina F. Sivergina, Michael P. Polis. About global null controllability of a quasi-static thermoelastic contact system. Conference Publications, 2005, 2005 (Special) : 816-823. doi: 10.3934/proc.2005.2005.816

[4]

Christopher J. Larsen. Local minimality and crack prediction in quasi-static Griffith fracture evolution. Discrete and Continuous Dynamical Systems - S, 2013, 6 (1) : 121-129. doi: 10.3934/dcdss.2013.6.121

[5]

Donald L. Brown, Vasilena Taralova. A multiscale finite element method for Neumann problems in porous microstructures. Discrete and Continuous Dynamical Systems - S, 2016, 9 (5) : 1299-1326. doi: 10.3934/dcdss.2016052

[6]

Roman VodiČka, Vladislav MantiČ. An energy based formulation of a quasi-static interface damage model with a multilinear cohesive law. Discrete and Continuous Dynamical Systems - S, 2017, 10 (6) : 1539-1561. doi: 10.3934/dcdss.2017079

[7]

Alice Fiaschi. Young-measure quasi-static damage evolution: The nonconvex and the brittle cases. Discrete and Continuous Dynamical Systems - S, 2013, 6 (1) : 17-42. doi: 10.3934/dcdss.2013.6.17

[8]

Yuan Xu, Fujun Zhou, Weihua Gong. Global Well-posedness and Optimal Decay Rate of the Quasi-static Incompressible Navier–Stokes–Fourier–Maxwell–Poisson System. Communications on Pure and Applied Analysis, 2022, 21 (5) : 1537-1565. doi: 10.3934/cpaa.2022028

[9]

S. Bonafede, G. R. Cirmi, A.F. Tedeev. Finite speed of propagation for the porous media equation with lower order terms. Discrete and Continuous Dynamical Systems, 2000, 6 (2) : 305-314. doi: 10.3934/dcds.2000.6.305

[10]

Mattia Turra. Existence and extinction in finite time for Stratonovich gradient noise porous media equations. Evolution Equations and Control Theory, 2019, 8 (4) : 867-882. doi: 10.3934/eect.2019042

[11]

Cornel M. Murea, H. G. E. Hentschel. A finite element method for growth in biological development. Mathematical Biosciences & Engineering, 2007, 4 (2) : 339-353. doi: 10.3934/mbe.2007.4.339

[12]

Martin Burger, José A. Carrillo, Marie-Therese Wolfram. A mixed finite element method for nonlinear diffusion equations. Kinetic and Related Models, 2010, 3 (1) : 59-83. doi: 10.3934/krm.2010.3.59

[13]

Ying Liu, Yanping Chen, Yunqing Huang, Yang Wang. Two-grid method for semiconductor device problem by mixed finite element method and characteristics finite element method. Electronic Research Archive, 2021, 29 (1) : 1859-1880. doi: 10.3934/era.2020095

[14]

Zuliang Lu, Fei Huang, Xiankui Wu, Lin Li, Shang Liu. Convergence and quasi-optimality of $ L^2- $norms based an adaptive finite element method for nonlinear optimal control problems. Electronic Research Archive, 2020, 28 (4) : 1459-1486. doi: 10.3934/era.2020077

[15]

Binjie Li, Xiaoping Xie, Shiquan Zhang. New convergence analysis for assumed stress hybrid quadrilateral finite element method. Discrete and Continuous Dynamical Systems - B, 2017, 22 (7) : 2831-2856. doi: 10.3934/dcdsb.2017153

[16]

Kun Wang, Yinnian He, Yueqiang Shang. Fully discrete finite element method for the viscoelastic fluid motion equations. Discrete and Continuous Dynamical Systems - B, 2010, 13 (3) : 665-684. doi: 10.3934/dcdsb.2010.13.665

[17]

Junjiang Lai, Jianguo Huang. A finite element method for vibration analysis of elastic plate-plate structures. Discrete and Continuous Dynamical Systems - B, 2009, 11 (2) : 387-419. doi: 10.3934/dcdsb.2009.11.387

[18]

So-Hsiang Chou. An immersed linear finite element method with interface flux capturing recovery. Discrete and Continuous Dynamical Systems - B, 2012, 17 (7) : 2343-2357. doi: 10.3934/dcdsb.2012.17.2343

[19]

Xiu Ye, Shangyou Zhang, Peng Zhu. A weak Galerkin finite element method for nonlinear conservation laws. Electronic Research Archive, 2021, 29 (1) : 1897-1923. doi: 10.3934/era.2020097

[20]

Hao Wang, Wei Yang, Yunqing Huang. An adaptive edge finite element method for the Maxwell's equations in metamaterials. Electronic Research Archive, 2020, 28 (2) : 961-976. doi: 10.3934/era.2020051

2021 Impact Factor: 1.497

Metrics

  • PDF downloads (278)
  • HTML views (0)
  • Cited by (11)

Other articles
by authors

[Back to Top]