-
Previous Article
Traveling wave solutions for a diffusive sis epidemic model
- DCDS-B Home
- This Issue
-
Next Article
Analysis and numerical approximations of equations of nonlinear poroelasticity
Finite-time quenching of competing species with constrained boundary evaporation
1. | CGG, Houston, TX 77072, United States |
2. | Department of Mathematics, University of British Columbia, Vancouver, BC V6T 1Z2, Canada |
3. | Department of Mathematics, Tulane University, New Orleans, LA 70118, United States |
References:
[1] |
D. Blatt and H. Comins, Prey-predator models in spatially heterogeneous environments, J. Theoretical Biology, 48 (1974), 75-83.
doi: 10.1016/0022-5193(74)90180-5. |
[2] |
L. Chen and A. Jüngel, Analysis of a multidimensional parabolic population model with strong cross-diffusion, SIAM J. Math. Anal., 36 (2004), 301-322.
doi: 10.1137/S0036141003427798. |
[3] |
L. Chen and A. Jüngel, Analysis of a parabolic cross-diffusion population model without self-diffusion, J. Differential Equations, 224 (2006), 39-59.
doi: 10.1016/j.jde.2005.08.002. |
[4] |
Y. Choi, R. Lui and Y. Yamada, Existence of global solutions for the Shigesada-Kawasaki-Teramoto model with weak cross-diffusion, Discrete Contin. Dyn. Syst., 9 (2003), 1193-1200.
doi: 10.3934/dcds.2003.9.1193. |
[5] |
Y. Choi, R. Lui and Y. Yamada, Existence of global solutions for the Shigesada-Kawasaki-Teramoto model with strongly coupled cross-diffusion, Discrete Contin. Dyn. Syst., 10 (2004), 719-730.
doi: 10.3934/dcds.2004.10.719. |
[6] |
P. Deuring, An initial-boundary value problem for a certain density-dependent diffusion system, Math. Z., 194 (1987), 375-396.
doi: 10.1007/BF01162244. |
[7] |
P. Fife, Asymptotic states for equations of reaction and diffusion, Bull. Amer. Math. Soc., 84 (1978), 693-726. |
[8] |
G. Galiano, M. Garzón and A. Jüngel, Semi-discretization in time and numerical convergence of solutions of a nonlinear cross-diffusion population model, Numer. Math., 93 (2003), 655-673.
doi: 10.1007/s002110200406. |
[9] |
W. Gurney and R. Nisbet, The regulation of inhomogeneous populations, J. Theoretical Biology, 52 (1975), 441-457.
doi: 10.1016/0022-5193(75)90011-9. |
[10] |
W. Gurney and R. Nisbet, A note on non-linear population transport, J. Theoretical Biology, 56 (1976), 249-251.
doi: 10.1016/S0022-5193(76)80056-2. |
[11] |
G. Hardin, The competitive exclusion principle, Science, 131 (1960), 1292-1297.
doi: 10.1126/science.131.3409.1292. |
[12] |
J. Jackson and L. Segel, Dissipative structure: An explanation and an ecological example, J. Theoretical Biology, 37 (1972), 545-559.
doi: 10.1016/0022-5193(72)90090-2. |
[13] |
E. Keller and L. Segel, Initiation of slime mold aggregation viewed as an instability, J. Theoretical Biology, 26 (1970), 399-415.
doi: 10.1016/0022-5193(70)90092-5. |
[14] |
J. Kim, Smooth solutions to a quasilinear system of diffusion equations for a certain population model, Nonlinear Analysis, 8 (1984), 1121-1144.
doi: 10.1016/0362-546X(84)90115-9. |
[15] |
D. Le, Global existence for a class of strongly coupled parabolic systems, Ann. Mat. Pura Appl., 185 (2006), 133-154.
doi: 10.1007/s10231-004-0131-7. |
[16] |
D. Le and T. Nguyen, Global existence for a class of triangular parabolic systems on domains of arbitrary dimension, Proc. Amer. Math. Soc., 133 (2005), 1985-1992.
doi: 10.1090/S0002-9939-05-07867-6. |
[17] |
D. Le, L. Nguyen and T. Nguyen, Shigesada-Kawasaki-Teramoto model on higher dimensional domains, Electron. J. Differential Equations, (2003), 12pp. |
[18] |
S. Levin, Dispersion and Population Interactions, American Naturalist, 108 (1974), 207-228. |
[19] |
S. Levin, Some mathematical questions in biology - VII, Lectures on Mathematics in the Life Sciences, 8 (1976), American Mathematical Society, Providence, R. I. |
[20] |
S. Levin, Studies in mathematical biology. Part II. Populations and communities, MAA Studies in Mathematics, 16 (1978), Mathematical Association of America, Washington, D.C. |
[21] |
Y. Li and C. Zhao, Global existence of solutions to a cross-diffusion system in higher dimensional domains, Discrete Contin. Dyn. Syst., 12 (2005), 185-192. |
[22] |
Y. Lou, S. Martinez and W. Ni, On $3\times 3$ Lotka-Volterra competition systems with cross-diffusion, Discrete Contin. Dyn. Syst., 6 (2000), 175-190. |
[23] |
Y. Lou and W. Ni, Diffusion, self-diffusion and cross-diffusion, J. Differential Equations, 131 (1996), 79-131.
doi: 10.1006/jdeq.1996.0157. |
[24] |
Y. Lou, W. Ni and Y. Wu, On the global existence of a cross-diffusion system, Discrete Contin. Dyn. Syst., 4 (1998), 193-203.
doi: 10.3934/dcds.1998.4.193. |
[25] |
M. Mimura and K. Kawasaki, Spatial segregation in competitive interaction-diffusion equations, J. Math. Biol., 9 (1980), 49-64.
doi: 10.1007/BF00276035. |
[26] |
M. Morisita, Habitat preference and evaluation of environment of an animal. Experimental studies on the population density of an ant-lion, Glenuroides japonicus M'L. (I), Physiol. Ecol. Japan, 5 (1952), 1-16, (In Japanese with English summary). |
[27] |
A. Okubo, "Ecology and Diffusion," Tokyo: Tsukiji Shokan, 1975. |
[28] |
M. Pozio and A. Tesei, Global existence of solutions for a strongly coupled quasilinear parabolic system, Nonlinear Anal., 14 (1990), 657-689.
doi: 10.1016/0362-546X(90)90043-G. |
[29] |
R. Redlinger, Existence of the global attractor for a strongly coupled parabolic system arising in population dynamics, J. Differential Equations, 118 (1995), 219-252.
doi: 10.1006/jdeq.1995.1073. |
[30] |
G. Rosen, Effects of diffusion on the stability of the equilibrium in multi-species ecological systems, Bull. Math. Biol., 39 (1977), 373-383. |
[31] |
W. Ruan, Positive steady-state solutions of a competing reaction-diffusion system with large cross-diffusion coefficients, J. Math. Anal. Appl., 197 (1996), 558-578.
doi: 10.1006/jmaa.1996.0039. |
[32] |
K. Ryu and I. Ahn, Positive steady-states for two interacting species models with linear self-cross diffusions, Discrete Contin. Dyn. Syst., 9 (2003), 1049-1061.
doi: 10.3934/dcds.2003.9.1049. |
[33] |
N. Shigesada, K. Kawasaki and E. Teramoto, Spatial segregation of interacting species, J. Theo. Biol., 79 (1979), 83-99.
doi: 10.1016/0022-5193(79)90258-3. |
[34] |
S. Shim, Uniform boundedness and convergence of solutions to cross-diffusion systems, J. Differential Equations, 185 (2002), 281-305.
doi: 10.1006/jdeq.2002.4169. |
[35] |
P. Tuoc, Global existence of solutions to Shigesada-Kawasaki-Teramoto cross-diffusion systems on domains of arbitrary dimensions, Proc. Amer. Math. Soc., 135 (2007), 3933-3941.
doi: 10.1090/S0002-9939-07-08978-2. |
[36] |
P. Tuoc, On global existence of solutions to a cross-diffusion system, J. Math. Anal. Appl., 343 (2008), 826-834.
doi: 10.1016/j.jmaa.2008.01.089. |
[37] |
A. Turing, The Chemical Basis of Morphogenesis, Phil. Transact. Royal Soc. B, 237 (1952), 37-72.
doi: 10.1098/rstb.1952.0012. |
[38] |
Y. Wu, Qualitative studies of solutions for some cross-diffusion systems, China-Japan Symposium on Reaction-Diffusion Equations and their Applications and Computational Aspects (Shanghai, 1994), 177-187, World Sci. Publ., River Edge, NJ, (1997). |
[39] |
A. Yagi, Global solution to some quasilinear parabolic system in population dynamics, Nonlinear Analysis, 21 (1993), 603-630.
doi: 10.1016/0362-546X(93)90004-C. |
show all references
References:
[1] |
D. Blatt and H. Comins, Prey-predator models in spatially heterogeneous environments, J. Theoretical Biology, 48 (1974), 75-83.
doi: 10.1016/0022-5193(74)90180-5. |
[2] |
L. Chen and A. Jüngel, Analysis of a multidimensional parabolic population model with strong cross-diffusion, SIAM J. Math. Anal., 36 (2004), 301-322.
doi: 10.1137/S0036141003427798. |
[3] |
L. Chen and A. Jüngel, Analysis of a parabolic cross-diffusion population model without self-diffusion, J. Differential Equations, 224 (2006), 39-59.
doi: 10.1016/j.jde.2005.08.002. |
[4] |
Y. Choi, R. Lui and Y. Yamada, Existence of global solutions for the Shigesada-Kawasaki-Teramoto model with weak cross-diffusion, Discrete Contin. Dyn. Syst., 9 (2003), 1193-1200.
doi: 10.3934/dcds.2003.9.1193. |
[5] |
Y. Choi, R. Lui and Y. Yamada, Existence of global solutions for the Shigesada-Kawasaki-Teramoto model with strongly coupled cross-diffusion, Discrete Contin. Dyn. Syst., 10 (2004), 719-730.
doi: 10.3934/dcds.2004.10.719. |
[6] |
P. Deuring, An initial-boundary value problem for a certain density-dependent diffusion system, Math. Z., 194 (1987), 375-396.
doi: 10.1007/BF01162244. |
[7] |
P. Fife, Asymptotic states for equations of reaction and diffusion, Bull. Amer. Math. Soc., 84 (1978), 693-726. |
[8] |
G. Galiano, M. Garzón and A. Jüngel, Semi-discretization in time and numerical convergence of solutions of a nonlinear cross-diffusion population model, Numer. Math., 93 (2003), 655-673.
doi: 10.1007/s002110200406. |
[9] |
W. Gurney and R. Nisbet, The regulation of inhomogeneous populations, J. Theoretical Biology, 52 (1975), 441-457.
doi: 10.1016/0022-5193(75)90011-9. |
[10] |
W. Gurney and R. Nisbet, A note on non-linear population transport, J. Theoretical Biology, 56 (1976), 249-251.
doi: 10.1016/S0022-5193(76)80056-2. |
[11] |
G. Hardin, The competitive exclusion principle, Science, 131 (1960), 1292-1297.
doi: 10.1126/science.131.3409.1292. |
[12] |
J. Jackson and L. Segel, Dissipative structure: An explanation and an ecological example, J. Theoretical Biology, 37 (1972), 545-559.
doi: 10.1016/0022-5193(72)90090-2. |
[13] |
E. Keller and L. Segel, Initiation of slime mold aggregation viewed as an instability, J. Theoretical Biology, 26 (1970), 399-415.
doi: 10.1016/0022-5193(70)90092-5. |
[14] |
J. Kim, Smooth solutions to a quasilinear system of diffusion equations for a certain population model, Nonlinear Analysis, 8 (1984), 1121-1144.
doi: 10.1016/0362-546X(84)90115-9. |
[15] |
D. Le, Global existence for a class of strongly coupled parabolic systems, Ann. Mat. Pura Appl., 185 (2006), 133-154.
doi: 10.1007/s10231-004-0131-7. |
[16] |
D. Le and T. Nguyen, Global existence for a class of triangular parabolic systems on domains of arbitrary dimension, Proc. Amer. Math. Soc., 133 (2005), 1985-1992.
doi: 10.1090/S0002-9939-05-07867-6. |
[17] |
D. Le, L. Nguyen and T. Nguyen, Shigesada-Kawasaki-Teramoto model on higher dimensional domains, Electron. J. Differential Equations, (2003), 12pp. |
[18] |
S. Levin, Dispersion and Population Interactions, American Naturalist, 108 (1974), 207-228. |
[19] |
S. Levin, Some mathematical questions in biology - VII, Lectures on Mathematics in the Life Sciences, 8 (1976), American Mathematical Society, Providence, R. I. |
[20] |
S. Levin, Studies in mathematical biology. Part II. Populations and communities, MAA Studies in Mathematics, 16 (1978), Mathematical Association of America, Washington, D.C. |
[21] |
Y. Li and C. Zhao, Global existence of solutions to a cross-diffusion system in higher dimensional domains, Discrete Contin. Dyn. Syst., 12 (2005), 185-192. |
[22] |
Y. Lou, S. Martinez and W. Ni, On $3\times 3$ Lotka-Volterra competition systems with cross-diffusion, Discrete Contin. Dyn. Syst., 6 (2000), 175-190. |
[23] |
Y. Lou and W. Ni, Diffusion, self-diffusion and cross-diffusion, J. Differential Equations, 131 (1996), 79-131.
doi: 10.1006/jdeq.1996.0157. |
[24] |
Y. Lou, W. Ni and Y. Wu, On the global existence of a cross-diffusion system, Discrete Contin. Dyn. Syst., 4 (1998), 193-203.
doi: 10.3934/dcds.1998.4.193. |
[25] |
M. Mimura and K. Kawasaki, Spatial segregation in competitive interaction-diffusion equations, J. Math. Biol., 9 (1980), 49-64.
doi: 10.1007/BF00276035. |
[26] |
M. Morisita, Habitat preference and evaluation of environment of an animal. Experimental studies on the population density of an ant-lion, Glenuroides japonicus M'L. (I), Physiol. Ecol. Japan, 5 (1952), 1-16, (In Japanese with English summary). |
[27] |
A. Okubo, "Ecology and Diffusion," Tokyo: Tsukiji Shokan, 1975. |
[28] |
M. Pozio and A. Tesei, Global existence of solutions for a strongly coupled quasilinear parabolic system, Nonlinear Anal., 14 (1990), 657-689.
doi: 10.1016/0362-546X(90)90043-G. |
[29] |
R. Redlinger, Existence of the global attractor for a strongly coupled parabolic system arising in population dynamics, J. Differential Equations, 118 (1995), 219-252.
doi: 10.1006/jdeq.1995.1073. |
[30] |
G. Rosen, Effects of diffusion on the stability of the equilibrium in multi-species ecological systems, Bull. Math. Biol., 39 (1977), 373-383. |
[31] |
W. Ruan, Positive steady-state solutions of a competing reaction-diffusion system with large cross-diffusion coefficients, J. Math. Anal. Appl., 197 (1996), 558-578.
doi: 10.1006/jmaa.1996.0039. |
[32] |
K. Ryu and I. Ahn, Positive steady-states for two interacting species models with linear self-cross diffusions, Discrete Contin. Dyn. Syst., 9 (2003), 1049-1061.
doi: 10.3934/dcds.2003.9.1049. |
[33] |
N. Shigesada, K. Kawasaki and E. Teramoto, Spatial segregation of interacting species, J. Theo. Biol., 79 (1979), 83-99.
doi: 10.1016/0022-5193(79)90258-3. |
[34] |
S. Shim, Uniform boundedness and convergence of solutions to cross-diffusion systems, J. Differential Equations, 185 (2002), 281-305.
doi: 10.1006/jdeq.2002.4169. |
[35] |
P. Tuoc, Global existence of solutions to Shigesada-Kawasaki-Teramoto cross-diffusion systems on domains of arbitrary dimensions, Proc. Amer. Math. Soc., 135 (2007), 3933-3941.
doi: 10.1090/S0002-9939-07-08978-2. |
[36] |
P. Tuoc, On global existence of solutions to a cross-diffusion system, J. Math. Anal. Appl., 343 (2008), 826-834.
doi: 10.1016/j.jmaa.2008.01.089. |
[37] |
A. Turing, The Chemical Basis of Morphogenesis, Phil. Transact. Royal Soc. B, 237 (1952), 37-72.
doi: 10.1098/rstb.1952.0012. |
[38] |
Y. Wu, Qualitative studies of solutions for some cross-diffusion systems, China-Japan Symposium on Reaction-Diffusion Equations and their Applications and Computational Aspects (Shanghai, 1994), 177-187, World Sci. Publ., River Edge, NJ, (1997). |
[39] |
A. Yagi, Global solution to some quasilinear parabolic system in population dynamics, Nonlinear Analysis, 21 (1993), 603-630.
doi: 10.1016/0362-546X(93)90004-C. |
[1] |
Yong Jung Kim, Wei-Ming Ni, Masaharu Taniguchi. Non-existence of localized travelling waves with non-zero speed in single reaction-diffusion equations. Discrete and Continuous Dynamical Systems, 2013, 33 (8) : 3707-3718. doi: 10.3934/dcds.2013.33.3707 |
[2] |
Zhiming Guo, Zhi-Chun Yang, Xingfu Zou. Existence and uniqueness of positive solution to a non-local differential equation with homogeneous Dirichlet boundary condition---A non-monotone case. Communications on Pure and Applied Analysis, 2012, 11 (5) : 1825-1838. doi: 10.3934/cpaa.2012.11.1825 |
[3] |
Ciprian G. Gal, Mahamadi Warma. Reaction-diffusion equations with fractional diffusion on non-smooth domains with various boundary conditions. Discrete and Continuous Dynamical Systems, 2016, 36 (3) : 1279-1319. doi: 10.3934/dcds.2016.36.1279 |
[4] |
Angelo Favini, Atsushi Yagi. Global existence for Laplace reaction-diffusion equations. Discrete and Continuous Dynamical Systems - S, 2020, 13 (5) : 1473-1493. doi: 10.3934/dcdss.2020083 |
[5] |
Bilgesu A. Bilgin, Varga K. Kalantarov. Non-existence of global solutions to nonlinear wave equations with positive initial energy. Communications on Pure and Applied Analysis, 2018, 17 (3) : 987-999. doi: 10.3934/cpaa.2018048 |
[6] |
Keisuke Matsuya, Tetsuji Tokihiro. Existence and non-existence of global solutions for a discrete semilinear heat equation. Discrete and Continuous Dynamical Systems, 2011, 31 (1) : 209-220. doi: 10.3934/dcds.2011.31.209 |
[7] |
Yuan Lou, Wei-Ming Ni, Yaping Wu. On the global existence of a cross-diffusion system. Discrete and Continuous Dynamical Systems, 1998, 4 (2) : 193-203. doi: 10.3934/dcds.1998.4.193 |
[8] |
J. F. Toland. Non-existence of global energy minimisers in Stokes waves problems. Discrete and Continuous Dynamical Systems, 2014, 34 (8) : 3211-3217. doi: 10.3934/dcds.2014.34.3211 |
[9] |
Fuqin Sun, Mingxin Wang. Non-existence of global solutions for nonlinear strongly damped hyperbolic systems. Discrete and Continuous Dynamical Systems, 2005, 12 (5) : 949-958. doi: 10.3934/dcds.2005.12.949 |
[10] |
Oleksiy V. Kapustyan, Pavlo O. Kasyanov, José Valero. Structure and regularity of the global attractor of a reaction-diffusion equation with non-smooth nonlinear term. Discrete and Continuous Dynamical Systems, 2014, 34 (10) : 4155-4182. doi: 10.3934/dcds.2014.34.4155 |
[11] |
Zhenghuan Gao, Peihe Wang. Global $ C^2 $-estimates for smooth solutions to uniformly parabolic equations with Neumann boundary condition. Discrete and Continuous Dynamical Systems, 2022, 42 (3) : 1201-1223. doi: 10.3934/dcds.2021152 |
[12] |
Shouming Zhou, Chunlai Mu, Yongsheng Mi, Fuchen Zhang. Blow-up for a non-local diffusion equation with exponential reaction term and Neumann boundary condition. Communications on Pure and Applied Analysis, 2013, 12 (6) : 2935-2946. doi: 10.3934/cpaa.2013.12.2935 |
[13] |
Marek Fila, Hirokazu Ninomiya, Juan-Luis Vázquez. Dirichlet boundary conditions can prevent blow-up in reaction-diffusion equations and systems. Discrete and Continuous Dynamical Systems, 2006, 14 (1) : 63-74. doi: 10.3934/dcds.2006.14.63 |
[14] |
Yueding Yuan, Zhiming Guo, Moxun Tang. A nonlocal diffusion population model with age structure and Dirichlet boundary condition. Communications on Pure and Applied Analysis, 2015, 14 (5) : 2095-2115. doi: 10.3934/cpaa.2015.14.2095 |
[15] |
Shu-Yu Hsu. Non-existence and behaviour at infinity of solutions of some elliptic equations. Discrete and Continuous Dynamical Systems, 2004, 10 (3) : 769-786. doi: 10.3934/dcds.2004.10.769 |
[16] |
Tarik Mohammed Touaoula. Global dynamics for a class of reaction-diffusion equations with distributed delay and neumann condition. Communications on Pure and Applied Analysis, 2020, 19 (5) : 2473-2490. doi: 10.3934/cpaa.2020108 |
[17] |
Yinuo Wang, Chuandong Li, Hongjuan Wu, Hao Deng. Existence of solutions for fractional instantaneous and non-instantaneous impulsive differential equations with perturbation and Dirichlet boundary value. Discrete and Continuous Dynamical Systems - S, 2022, 15 (7) : 1767-1776. doi: 10.3934/dcdss.2022005 |
[18] |
Piotr Kowalski. The existence of a solution for Dirichlet boundary value problem for a Duffing type differential inclusion. Discrete and Continuous Dynamical Systems - B, 2014, 19 (8) : 2569-2580. doi: 10.3934/dcdsb.2014.19.2569 |
[19] |
Yi Li, Chunshan Zhao. Global existence of solutions to a cross-diffusion system in higher dimensional domains. Discrete and Continuous Dynamical Systems, 2005, 12 (2) : 185-192. doi: 10.3934/dcds.2005.12.185 |
[20] |
Esther S. Daus, Josipa-Pina Milišić, Nicola Zamponi. Global existence for a two-phase flow model with cross-diffusion. Discrete and Continuous Dynamical Systems - B, 2020, 25 (3) : 957-979. doi: 10.3934/dcdsb.2019198 |
2021 Impact Factor: 1.497
Tools
Metrics
Other articles
by authors
[Back to Top]