\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Analysis of a scalar nonlocal peridynamic model with a sign changing kernel

Abstract Related Papers Cited by
  • In this paper, a scalar peridynamic model is analyzed. The study extends earlier works in the literature on scalar nonlocal diffusion and nonlocal peridynamic models to include a sign changing kernel. We prove the well-posedness of both variational problems with nonlocal constraints and time-dependent equations with or without damping. The analysis is based on some nonlocal Poincaré type inequalities and compactness of the associated nonlocal operators. It also offers careful characterizations of the associated solution spaces such as compact embedding, separability and completeness along with regularity properties of solutions for different types of kernels.
    Mathematics Subject Classification: 45A05, 45K05, 47G10, 74G65, 74H20, 74H25.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    B. Aksoylu and T. Mengesha, Results on nonlocal boundary value problems, Numerical Functional Analysis and Optimization, 31 (2010), 1301-1317.doi: 10.1080/01630563.2010.519136.

    [2]

    B. Alali and R. Lipton, Multiscale analysis of heterogeneous media in the peridynamic formulation, Journal of Elasticity, 106 (2012), 71-103.doi: 10.1007/s10659-010-9291-4.

    [3]

    F. Andreu-Vaillo, J. M. Mazn, Julio D. Rossi and J. J. Toledo-Melero, "Nonlocal Diffusion Problems," American Mathematical Society. Mathematical Surveys and Monographs, 2010. 165.

    [4]

    J. Bourgain, H. Brézis and P. Mironescu, Another look at Sobolev spaces, in "Optimal Control and Partial Differential Equations" (Editors, J. L. Menaldi, E. Rofman and A. Sulem), IOS Press (2001), 439-455. A volume in honour of A. Benssoussan's 60th birthday.

    [5]

    H. Brézis, "Analyse Fonctionnelle. Théorie et Applications," Masson, 1978.

    [6]

    H. Brézis, How to recognize constant functions. Connections with Sobolev spaces, Uspekhi Mat. Nauk 57, 59-74 (2002)(Russian). English version: Russian Math Surveys 57 (2002), 693-708, Volume in Honor of M. Vishik.doi: 10.1070/RM2002v057n04ABEH000533.

    [7]

    R. Dautray and J-L. Lions, "Mathematical and Numerical Analysis for Science and Technology, Evolution Problems I," 5, Springer-Verlag, 1992.doi: 10.1007/978-3-642-58090-1.

    [8]

    K. Dayal and K. Bhattacharya, Kinetics of phase transformations in the peridynamic formulation of continuum mechanics, J. Mech. Phys. Solids, 54 (2006), 1811-1842.doi: 10.1016/j.jmps.2006.04.001.

    [9]

    Q. Du, M. Gunzburger, R. Lehoucq and K. Zhou, Analysis of the volume-constrained peridynamic Navier equation of linear elasticity, to appear in Journal of Elasticity, 2013.doi: 10.1007/s10659-012-9418-x.

    [10]

    Q. Du, M. Gunzburger, R. Lehoucq and K. Zhou, A nonlocal vector calculus, nonlocal volume-constrained problems, and nonlocal balance laws, Math. Mod. Meth. Appl. Sci., 23 (2013), 493-540.doi: 10.1142/S0218202512500546.

    [11]

    Q. Du, M. Gunzburger, R. Lehoucq and K. Zhou, Analysis and approximation of nonlocal diffusion problems with volume constraints, SIAM Review, 54 (2012), 667-696.doi: 10.1137/110833294.

    [12]

    Q. Du and K. Zhou, Mathematical analysis for the peridynamic nonlocal continuum theory, ESIAM: Math. Mod. Numer. Anal., 45 (2011), 217-234.doi: 10.1051/m2an/2010040.

    [13]

    E. Emmrich and O. Weckner, The peridynamic equation and its spatial discretization, Mathematical Modelling and Analysis, 12 (2007), 17-27.doi: 10.3846/1392-6292.2007.12.17-27.

    [14]

    E. Emmrich and O. Weckner, On the well-posedness of the linear peridynamic model and its convergence towards the {Navier equation of linear elasticity}, Commun. Math. Sci., 5 (2007), 851-864.

    [15]

    G. Gilboa and S. Osher, Nonlocal operators with applications to image processing, Multiscale Modeling and Simulation, 7 (2008), {1005-1028}.doi: 10.1137/070698592.

    [16]

    M. Gunzburger and R. B. Lehoucq, A nonlocal vector calculus with application to nonlocal boundary value problems, Multiscale Model. Simul., 8 (2010), 1581-1598.doi: 10.1137/090766607.

    [17]

    T. Mengesha and Q. Du, The bond-based peridynamic system with Dirichlet-type volume constraint, Proceeding of Royal Soc. Edinburgh A, to appear 2013.

    [18]

    T. Mengesha and Q. Du, Nonlocal constrained value problems for a linear peridynamic Navier equation, preprint, 2013.

    [19]

    S. Motsch and E. Tadmor, A new model for self-organized dynamics and its flocking behavior, J. Stat. Physics, 144 (2011), 923-947.doi: 10.1007/s10955-011-0285-9.

    [20]

    S. A. Silling, Reformulation of elasticity theory for discontinuities and long-range forces, J. Mech. Phys. Solids, 48 (2000), {175-209}.doi: 10.1016/S0022-5096(99)00029-0.

    [21]

    E. D. Nezza, G. Palatucci and E. Valdinoci, Hitchhiker's guide to the fractional Sobolev spaces, Bull. Sci. Math., 136 (2012), 521-573.doi: 10.1016/j.bulsci.2011.12.004.

    [22]

    A. Ponce, An estimate in the spirit of Poincare's inequality, J. Eur. Math. Soc., 6 (2004), {1-15}.

    [23]

    S. Silling, O. Weckner, E. Askari and F. Bobaru, Crack nucleation in a peridynamic solid, Int. J. Fract., 162 (2010), 219-227.

    [24]

    K. Zhou and Q. Du, Mathematical and numerical analysis of linear peridynamic models with nonlocal boundary, SIAM J. Numer. Anal., 48 (2010), 1759-1780.doi: 10.1137/090781267.

  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(290) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return