\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Exponential stability for a class of linear hyperbolic equations with hereditary memory

Abstract Related Papers Cited by
  • We establish a necessary and sufficient condition of exponential stability for the contraction semigroup generated by an abstract version of the linear differential equation $$∂_t u(t)-\int_0^\infty k(s)\Delta u(t-s)ds = 0 $$ modeling hereditary heat conduction of Gurtin-Pipkin type.
    Mathematics Subject Classification: 35B40, 45K05, 45M10, 47D03.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    V. V. Chepyzhov, E. Mainini and V. Pata, Stability of abstract linear semigroups arising from heat conduction with memory, Asymptot. Anal., 50 (2006), 269-291.

    [2]

    V. V. Chepyzhov and V. Pata, Some remarks on stability of semigroups arising from linear viscoelasticity, Asymptot. Anal., 46 (2006), 251-273.

    [3]

    C. M. Dafermos, Asymptotic stability in viscoelasticity, Arch. Rational Mech. Anal., 37 (1970), 297-308.

    [4]

    B. R. Duffy, P. Freitas and M. Grinfeld, Memory driven instability in a diffusion process, SIAM J. Math. Anal., 33 (2002), 1090-1106.doi: 10.1137/S0036141001388592.

    [5]

    M. Fabrizio and B. Lazzari, On the existence and asymptotic stability of solutions for linear viscoelastic solids, Arch. Rational Mech. Anal., 116 (1991), 139-152.doi: 10.1007/BF00375589.

    [6]

    D. Fargue, Réductibilité des systèmes héréditaires à des systèmes dynamiques (régis par des équations différentielles ou aux dérivées partielles), C. R. Acad. Sci. Paris Sér. A-B, 277 (1973), B471-B473.

    [7]

    C. Giorgi, M. G. Naso and V. Pata, Exponential stability in linear heat conduction with memory: a semigroup approach, Comm. Appl. Anal., 5 (2001), 121-133.

    [8]

    M. E. Gurtin and A. C. Pipkin, A general theory of heat conduction with finite wave speed, Arch. Rational Mech. Anal., 31 (1968), 113-126.doi: 10.1007/BF00281373.

    [9]

    E. Hewitt and K. Stromberg, "Real and Abstract Analysis. A Modern Treatment of the Theory of Functions of a Real Variable," Springer-Verlag, New York, 1965.

    [10]

    T. Hillen and K. P. Hadeler, Hyperbolic systems and transport equations in mathematical biology, in "Analysis and Numerics for Conservation Laws," Springer, Berlin, (2005), 257-279.doi: 10.1007/3-540-27907-5_11.

    [11]

    Z. Liu and S. Zheng, "Semigroups Associated with Dissipative Systems," Chapman & Hall/CRC Research Notes in Mathematics, 398, Chapman & Hall/CRC, Boca Raton, FL, 1999.

    [12]

    V. Méndez, J. Fort and J. Farjas, Speed of wave-front solutions to hyperbolic reaction-diffusion equations, Phys. Rev. E (3), 60 (1999), 5231-5243.doi: 10.1103/PhysRevE.60.5231.

    [13]

    V. Méndez and J. E. Llebot, Hyperbolic reaction-diffusion equations for a forest fire model, Phys. Rev. E (3), 56 (1997), 6557-6563.doi: 10.1103/PhysRevE.56.6557.

    [14]

    J. E. Muñoz Rivera, Asymptotic behaviour in linear viscoelasticity, Quart. Appl. Math., 52 (1994), 628-648.

    [15]

    W. E. Olmstead, S. H. Davis, S. Rosenblat and W. L. Kath, Bifurcation with memory, SIAM J. Appl. Math., 46 (1986), 171-188.doi: 10.1137/0146013.

    [16]

    V. Pata, Exponential stability in linear viscoelasticity with almost flat memory kernels, Commun. Pure Appl. Anal., 9 (2010), 721-730.doi: 10.3934/cpaa.2010.9.721.

    [17]

    A. Pazy, "Semigroups of Linear Operators and Applications to Partial Differential Equations," Applied Mathematical Sciences, 44, Springer-Verlag, New York, 1983.doi: 10.1007/978-1-4612-5561-1.

    [18]

    J. Prüss, On the spectrum of $C_0$-semigroups, Trans. Amer. Math. Soc., 284 (1984), 847-857.doi: 10.2307/1999112.

  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(162) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return