-
Previous Article
Effects of white noise in multistable dynamics
- DCDS-B Home
- This Issue
-
Next Article
Derivation of SDES for a macroevolutionary process
Attractivity for neutral functional differential equations
1. | Dpto. Ecuaciones Diferenciales y Análisis Numérico, Facultad de Matemáticas, Universidad de Sevilla, Campus Reina Mercedes, Apdo. de Correos 1160, 41080 Sevilla |
2. | Department of Mathematical Sciences, University of Durham, Durham DH1 3LE, United Kingdom |
References:
[1] |
T. Caraballo and G. Kiss, Attractors for differential equations with multiple variable delay, Discrete Contin. Dyn. Syst., 33 (2013), 1365-1374.
doi: 10.3934/dcds.2013.33.1365. |
[2] |
T. Caraballo, G. Łukaszewicz and J. Real, Pullback attractors for asymptotically compact non-autonomous dynamical systems, Nonlinear Analysis, 64 (2006), 484-498.
doi: 10.1016/j.na.2005.03.111. |
[3] |
T. Caraballo, P. Marín-Rubio and J. Valero, Autonomous and non-autonomous attractors for differential equations with delays, J. Differential Equations, 208 (2005), 9-41.
doi: 10.1016/j.jde.2003.09.008. |
[4] |
Tomás Caraballo, José A. Langa and James C. Robinson, Attractors for differential equations with variable delays, J. Math. Anal. Appl., 260 (2001), 421-438.
doi: 10.1006/jmaa.2000.7464. |
[5] |
T. Caraballo, J. Real and T. Taniguchi, The exponential stability of neutral stochastic delay partial differential equations, Discrete Contin. Dyn. Syst., 18 (2007), 295-313.
doi: 10.3934/dcds.2007.18.295. |
[6] |
H. Chen, Impulsive-integral inequality and exponential stability for stochastic partial differential equations with delays, Statist. Probab. Lett., 80 (2010), 50-56.
doi: 10.1016/j.spl.2009.09.011. |
[7] |
J. K. Hale, "Asymptotic Behavior of Dissipative Systems," Mathematical Surveys and Monographs, 25, American Mathematical Society, Providence, RI, 1988. |
[8] |
J. K. Hale and S. M. Verduyn Lunel, "Introduction to Functional-Differential Equations," 99 of Applied Mathematical Sciences. Springer-Verlag, New York, 1993. |
[9] |
G. Kiss and B. Krauskopf, Stability implications of delay distribution for first-order and second-order systems, Discrete Contin. Dyn. Syst. Ser. B, 13 (2010), 327-345.
doi: 10.3934/dcdsb.2010.13.327. |
[10] |
G. Kiss and B. Krauskopf, Stabilizing effect of delay distribution for a class of second-order systems without instantaneous feedback, Dynamical Systems: An International Journal, 26 (2011), 85-101.
doi: 10.1080/14689367.2010.523889. |
[11] |
G. Kiss and J.-P. Lessard, Computational fixed point theory for differential delay equations with multiple time lags, Journal of Differential Equations, 252 (2012), 3093-3115.
doi: 10.1016/j.jde.2011.11.020. |
[12] |
P. E. Kloeden, Pullback attractors of nonautonomous semidynamical systems, Stoch. Dyn., 3 (2003), 101-112.
doi: 10.1142/S0219493703000632. |
[13] |
P. Kloeden and M. Rasmussen, "Nonautonomous Dynamical Systems," Mathematical Surveys and Monographs, 176, American Mathematical Society, Providence, RI, 2011. |
[14] |
Y. Kuang, "Delay Differential Equations with Applications in Population Dynamics," 191 of Mathematics in Science and Engineering. Academic Press Inc., Boston, MA, 1993. |
[15] |
P. Marín-Rubio and J. Real, On the relation between two different concepts of pullback attractors for non-autonomous dynamical systems, Nonlinear Anal., 71 (2009), 3956-3963.
doi: 10.1016/j.na.2009.02.065. |
[16] |
R. D. Nussbaum, Functional differential equations, in "Handbook of Dynamical Systems," 2, 461-499. North-Holland, Amsterdam, (2002).
doi: 10.1016/S1874-575X(02)80031-5. |
[17] |
M. Rasmussen, "Attractivity and Bifurcation for Nonautonomous Dynamical Systems," 1907 of Lecture Notes in Mathematics. Springer, Berlin, 2007.
doi: 10.1007/978-3-540-71225-1. |
[18] |
B. Schmalfuss, Backward cocycles and attractors of stochastic differential equations, in "International Seminar on Applied Mathematics-Nonlinear Dynamics: Attractor Approximation and Global Behaviour," 185-192. Dresden, (1992). |
[19] |
G. R. Sell, Nonautonomous differential equations and topological dynamics. I. The basic theory, Trans. Amer. Math. Soc., 127 (1967), 241-262. |
[20] |
G. R. Sell, Nonautonomous differential equations and topological dynamics. II. Limiting equations, Trans. Amer. Math. Soc., 127 (1967), 263-283.
doi: 10.1090/S0002-9947-1967-0212314-4. |
[21] |
H. O. Walther, Dynamics of delay differential equations, in "Delay Differential Equations and Applications," 205 of NATO Sci. Ser. II Math. Phys. Chem., 411-476. Springer, Dordrecht, (2006).
doi: 10.1007/1-4020-3647-7_10. |
[22] |
J. Wu, H. Xia and B. Zhang, Topological transversality and periodic solutions of neutral functional-differential equations, Proc. Roy. Soc. Edinburgh Sect. A, 129 (1999), 199-220.
doi: 10.1017/S0308210500027530. |
show all references
References:
[1] |
T. Caraballo and G. Kiss, Attractors for differential equations with multiple variable delay, Discrete Contin. Dyn. Syst., 33 (2013), 1365-1374.
doi: 10.3934/dcds.2013.33.1365. |
[2] |
T. Caraballo, G. Łukaszewicz and J. Real, Pullback attractors for asymptotically compact non-autonomous dynamical systems, Nonlinear Analysis, 64 (2006), 484-498.
doi: 10.1016/j.na.2005.03.111. |
[3] |
T. Caraballo, P. Marín-Rubio and J. Valero, Autonomous and non-autonomous attractors for differential equations with delays, J. Differential Equations, 208 (2005), 9-41.
doi: 10.1016/j.jde.2003.09.008. |
[4] |
Tomás Caraballo, José A. Langa and James C. Robinson, Attractors for differential equations with variable delays, J. Math. Anal. Appl., 260 (2001), 421-438.
doi: 10.1006/jmaa.2000.7464. |
[5] |
T. Caraballo, J. Real and T. Taniguchi, The exponential stability of neutral stochastic delay partial differential equations, Discrete Contin. Dyn. Syst., 18 (2007), 295-313.
doi: 10.3934/dcds.2007.18.295. |
[6] |
H. Chen, Impulsive-integral inequality and exponential stability for stochastic partial differential equations with delays, Statist. Probab. Lett., 80 (2010), 50-56.
doi: 10.1016/j.spl.2009.09.011. |
[7] |
J. K. Hale, "Asymptotic Behavior of Dissipative Systems," Mathematical Surveys and Monographs, 25, American Mathematical Society, Providence, RI, 1988. |
[8] |
J. K. Hale and S. M. Verduyn Lunel, "Introduction to Functional-Differential Equations," 99 of Applied Mathematical Sciences. Springer-Verlag, New York, 1993. |
[9] |
G. Kiss and B. Krauskopf, Stability implications of delay distribution for first-order and second-order systems, Discrete Contin. Dyn. Syst. Ser. B, 13 (2010), 327-345.
doi: 10.3934/dcdsb.2010.13.327. |
[10] |
G. Kiss and B. Krauskopf, Stabilizing effect of delay distribution for a class of second-order systems without instantaneous feedback, Dynamical Systems: An International Journal, 26 (2011), 85-101.
doi: 10.1080/14689367.2010.523889. |
[11] |
G. Kiss and J.-P. Lessard, Computational fixed point theory for differential delay equations with multiple time lags, Journal of Differential Equations, 252 (2012), 3093-3115.
doi: 10.1016/j.jde.2011.11.020. |
[12] |
P. E. Kloeden, Pullback attractors of nonautonomous semidynamical systems, Stoch. Dyn., 3 (2003), 101-112.
doi: 10.1142/S0219493703000632. |
[13] |
P. Kloeden and M. Rasmussen, "Nonautonomous Dynamical Systems," Mathematical Surveys and Monographs, 176, American Mathematical Society, Providence, RI, 2011. |
[14] |
Y. Kuang, "Delay Differential Equations with Applications in Population Dynamics," 191 of Mathematics in Science and Engineering. Academic Press Inc., Boston, MA, 1993. |
[15] |
P. Marín-Rubio and J. Real, On the relation between two different concepts of pullback attractors for non-autonomous dynamical systems, Nonlinear Anal., 71 (2009), 3956-3963.
doi: 10.1016/j.na.2009.02.065. |
[16] |
R. D. Nussbaum, Functional differential equations, in "Handbook of Dynamical Systems," 2, 461-499. North-Holland, Amsterdam, (2002).
doi: 10.1016/S1874-575X(02)80031-5. |
[17] |
M. Rasmussen, "Attractivity and Bifurcation for Nonautonomous Dynamical Systems," 1907 of Lecture Notes in Mathematics. Springer, Berlin, 2007.
doi: 10.1007/978-3-540-71225-1. |
[18] |
B. Schmalfuss, Backward cocycles and attractors of stochastic differential equations, in "International Seminar on Applied Mathematics-Nonlinear Dynamics: Attractor Approximation and Global Behaviour," 185-192. Dresden, (1992). |
[19] |
G. R. Sell, Nonautonomous differential equations and topological dynamics. I. The basic theory, Trans. Amer. Math. Soc., 127 (1967), 241-262. |
[20] |
G. R. Sell, Nonautonomous differential equations and topological dynamics. II. Limiting equations, Trans. Amer. Math. Soc., 127 (1967), 263-283.
doi: 10.1090/S0002-9947-1967-0212314-4. |
[21] |
H. O. Walther, Dynamics of delay differential equations, in "Delay Differential Equations and Applications," 205 of NATO Sci. Ser. II Math. Phys. Chem., 411-476. Springer, Dordrecht, (2006).
doi: 10.1007/1-4020-3647-7_10. |
[22] |
J. Wu, H. Xia and B. Zhang, Topological transversality and periodic solutions of neutral functional-differential equations, Proc. Roy. Soc. Edinburgh Sect. A, 129 (1999), 199-220.
doi: 10.1017/S0308210500027530. |
[1] |
Wen Tan. The regularity of pullback attractor for a non-autonomous p-Laplacian equation with dynamical boundary condition. Discrete and Continuous Dynamical Systems - B, 2019, 24 (2) : 529-546. doi: 10.3934/dcdsb.2018194 |
[2] |
Rodrigo Samprogna, Tomás Caraballo. Pullback attractor for a dynamic boundary non-autonomous problem with Infinite Delay. Discrete and Continuous Dynamical Systems - B, 2018, 23 (2) : 509-523. doi: 10.3934/dcdsb.2017195 |
[3] |
T. Caraballo, J. A. Langa, J. Valero. Structure of the pullback attractor for a non-autonomous scalar differential inclusion. Discrete and Continuous Dynamical Systems - S, 2016, 9 (4) : 979-994. doi: 10.3934/dcdss.2016037 |
[4] |
Chunyou Sun, Daomin Cao, Jinqiao Duan. Non-autonomous wave dynamics with memory --- asymptotic regularity and uniform attractor. Discrete and Continuous Dynamical Systems - B, 2008, 9 (3&4, May) : 743-761. doi: 10.3934/dcdsb.2008.9.743 |
[5] |
Olivier Goubet, Wided Kechiche. Uniform attractor for non-autonomous nonlinear Schrödinger equation. Communications on Pure and Applied Analysis, 2011, 10 (2) : 639-651. doi: 10.3934/cpaa.2011.10.639 |
[6] |
Mirelson M. Freitas, Alberto L. C. Costa, Geraldo M. Araújo. Pullback dynamics of a non-autonomous mixture problem in one dimensional solids with nonlinear damping. Communications on Pure and Applied Analysis, 2020, 19 (2) : 785-809. doi: 10.3934/cpaa.2020037 |
[7] |
Mirelson M. Freitas, Anderson J. A. Ramos, Manoel J. Dos Santos, Eraldo R. N. Fonseca. Attractors and pullback dynamics for non-autonomous piezoelectric system with magnetic and thermal effects. Communications on Pure and Applied Analysis, 2021, 20 (11) : 3745-3765. doi: 10.3934/cpaa.2021129 |
[8] |
Xue-Li Song, Yan-Ren Hou. Pullback $\mathcal{D}$-attractors for the non-autonomous Newton-Boussinesq equation in two-dimensional bounded domain. Discrete and Continuous Dynamical Systems, 2012, 32 (3) : 991-1009. doi: 10.3934/dcds.2012.32.991 |
[9] |
Suping Wang, Qiaozhen Ma. Existence of pullback attractors for the non-autonomous suspension bridge equation with time delay. Discrete and Continuous Dynamical Systems - B, 2020, 25 (4) : 1299-1316. doi: 10.3934/dcdsb.2019221 |
[10] |
Bo You, Yanren Hou, Fang Li, Jinping Jiang. Pullback attractors for the non-autonomous quasi-linear complex Ginzburg-Landau equation with $p$-Laplacian. Discrete and Continuous Dynamical Systems - B, 2014, 19 (6) : 1801-1814. doi: 10.3934/dcdsb.2014.19.1801 |
[11] |
Alexandre N. Carvalho, José A. Langa, James C. Robinson. Forwards dynamics of non-autonomous dynamical systems: Driving semigroups without backwards uniqueness and structure of the attractor. Communications on Pure and Applied Analysis, 2020, 19 (4) : 1997-2013. doi: 10.3934/cpaa.2020088 |
[12] |
Zhaojuan Wang, Shengfan Zhou. Random attractor for stochastic non-autonomous damped wave equation with critical exponent. Discrete and Continuous Dynamical Systems, 2017, 37 (1) : 545-573. doi: 10.3934/dcds.2017022 |
[13] |
Shengfan Zhou, Min Zhao. Fractal dimension of random attractor for stochastic non-autonomous damped wave equation with linear multiplicative white noise. Discrete and Continuous Dynamical Systems, 2016, 36 (5) : 2887-2914. doi: 10.3934/dcds.2016.36.2887 |
[14] |
Shuang Yang, Yangrong Li. Forward controllability of a random attractor for the non-autonomous stochastic sine-Gordon equation on an unbounded domain. Evolution Equations and Control Theory, 2020, 9 (3) : 581-604. doi: 10.3934/eect.2020025 |
[15] |
Xueli Song, Jianhua Wu. Non-autonomous 2D Newton-Boussinesq equation with oscillating external forces and its uniform attractor. Evolution Equations and Control Theory, 2022, 11 (1) : 41-65. doi: 10.3934/eect.2020102 |
[16] |
Ling Xu, Jianhua Huang, Qiaozhen Ma. Random exponential attractor for stochastic non-autonomous suspension bridge equation with additive white noise. Discrete and Continuous Dynamical Systems - B, 2022 doi: 10.3934/dcdsb.2021318 |
[17] |
Zhaojuan Wang, Shengfan Zhou. Random attractor and random exponential attractor for stochastic non-autonomous damped cubic wave equation with linear multiplicative white noise. Discrete and Continuous Dynamical Systems, 2018, 38 (9) : 4767-4817. doi: 10.3934/dcds.2018210 |
[18] |
Flank D. M. Bezerra, Vera L. Carbone, Marcelo J. D. Nascimento, Karina Schiabel. Pullback attractors for a class of non-autonomous thermoelastic plate systems. Discrete and Continuous Dynamical Systems - B, 2018, 23 (9) : 3553-3571. doi: 10.3934/dcdsb.2017214 |
[19] |
Zhijian Yang, Yanan Li. Upper semicontinuity of pullback attractors for non-autonomous Kirchhoff wave equations. Discrete and Continuous Dynamical Systems - B, 2019, 24 (9) : 4899-4912. doi: 10.3934/dcdsb.2019036 |
[20] |
Peter E. Kloeden, Jacson Simsen. Pullback attractors for non-autonomous evolution equations with spatially variable exponents. Communications on Pure and Applied Analysis, 2014, 13 (6) : 2543-2557. doi: 10.3934/cpaa.2014.13.2543 |
2021 Impact Factor: 1.497
Tools
Metrics
Other articles
by authors
[Back to Top]