Advanced Search
Article Contents
Article Contents

Attractivity for neutral functional differential equations

Abstract Related Papers Cited by
  • We study the long term dynamics of non-autonomous functional differential equations. Namely, we establish existence results on pullback attractors for non-linear neutral functional differential equations with time varying delays. The two main results differ in smoothness properties of delay functions.
    Mathematics Subject Classification: Primary: 37C30; Secondary: 34D45, 34K20.


    \begin{equation} \\ \end{equation}
  • [1]

    T. Caraballo and G. Kiss, Attractors for differential equations with multiple variable delay, Discrete Contin. Dyn. Syst., 33 (2013), 1365-1374.doi: 10.3934/dcds.2013.33.1365.


    T. Caraballo, G. Łukaszewicz and J. Real, Pullback attractors for asymptotically compact non-autonomous dynamical systems, Nonlinear Analysis, 64 (2006), 484-498.doi: 10.1016/j.na.2005.03.111.


    T. Caraballo, P. Marín-Rubio and J. Valero, Autonomous and non-autonomous attractors for differential equations with delays, J. Differential Equations, 208 (2005), 9-41.doi: 10.1016/j.jde.2003.09.008.


    Tomás Caraballo, José A. Langa and James C. Robinson, Attractors for differential equations with variable delays, J. Math. Anal. Appl., 260 (2001), 421-438.doi: 10.1006/jmaa.2000.7464.


    T. Caraballo, J. Real and T. Taniguchi, The exponential stability of neutral stochastic delay partial differential equations, Discrete Contin. Dyn. Syst., 18 (2007), 295-313.doi: 10.3934/dcds.2007.18.295.


    H. Chen, Impulsive-integral inequality and exponential stability for stochastic partial differential equations with delays, Statist. Probab. Lett., 80 (2010), 50-56.doi: 10.1016/j.spl.2009.09.011.


    J. K. Hale, "Asymptotic Behavior of Dissipative Systems," Mathematical Surveys and Monographs, 25, American Mathematical Society, Providence, RI, 1988.


    J. K. Hale and S. M. Verduyn Lunel, "Introduction to Functional-Differential Equations," 99 of Applied Mathematical Sciences. Springer-Verlag, New York, 1993.


    G. Kiss and B. Krauskopf, Stability implications of delay distribution for first-order and second-order systems, Discrete Contin. Dyn. Syst. Ser. B, 13 (2010), 327-345.doi: 10.3934/dcdsb.2010.13.327.


    G. Kiss and B. Krauskopf, Stabilizing effect of delay distribution for a class of second-order systems without instantaneous feedback, Dynamical Systems: An International Journal, 26 (2011), 85-101.doi: 10.1080/14689367.2010.523889.


    G. Kiss and J.-P. Lessard, Computational fixed point theory for differential delay equations with multiple time lags, Journal of Differential Equations, 252 (2012), 3093-3115.doi: 10.1016/j.jde.2011.11.020.


    P. E. Kloeden, Pullback attractors of nonautonomous semidynamical systems, Stoch. Dyn., 3 (2003), 101-112.doi: 10.1142/S0219493703000632.


    P. Kloeden and M. Rasmussen, "Nonautonomous Dynamical Systems," Mathematical Surveys and Monographs, 176, American Mathematical Society, Providence, RI, 2011.


    Y. Kuang, "Delay Differential Equations with Applications in Population Dynamics," 191 of Mathematics in Science and Engineering. Academic Press Inc., Boston, MA, 1993.


    P. Marín-Rubio and J. Real, On the relation between two different concepts of pullback attractors for non-autonomous dynamical systems, Nonlinear Anal., 71 (2009), 3956-3963.doi: 10.1016/j.na.2009.02.065.


    R. D. Nussbaum, Functional differential equations, in "Handbook of Dynamical Systems," 2, 461-499. North-Holland, Amsterdam, (2002).doi: 10.1016/S1874-575X(02)80031-5.


    M. Rasmussen, "Attractivity and Bifurcation for Nonautonomous Dynamical Systems," 1907 of Lecture Notes in Mathematics. Springer, Berlin, 2007.doi: 10.1007/978-3-540-71225-1.


    B. Schmalfuss, Backward cocycles and attractors of stochastic differential equations, in "International Seminar on Applied Mathematics-Nonlinear Dynamics: Attractor Approximation and Global Behaviour," 185-192. Dresden, (1992).


    G. R. Sell, Nonautonomous differential equations and topological dynamics. I. The basic theory, Trans. Amer. Math. Soc., 127 (1967), 241-262.


    G. R. Sell, Nonautonomous differential equations and topological dynamics. II. Limiting equations, Trans. Amer. Math. Soc., 127 (1967), 263-283.doi: 10.1090/S0002-9947-1967-0212314-4.


    H. O. Walther, Dynamics of delay differential equations, in "Delay Differential Equations and Applications," 205 of NATO Sci. Ser. II Math. Phys. Chem., 411-476. Springer, Dordrecht, (2006).doi: 10.1007/1-4020-3647-7_10.


    J. Wu, H. Xia and B. Zhang, Topological transversality and periodic solutions of neutral functional-differential equations, Proc. Roy. Soc. Edinburgh Sect. A, 129 (1999), 199-220.doi: 10.1017/S0308210500027530.

  • 加载中

Article Metrics

HTML views() PDF downloads(101) Cited by(0)

Access History

Other Articles By Authors



    DownLoad:  Full-Size Img  PowerPoint