Citation: |
[1] |
E. J. Allen, S. J. Novosel and Z. Zhang, Finite element and difference approximation of some linear stochastic partial differential equations, Stochastics Stochastics Rep., 64 (1998), 117-142.doi: 10.1080/17442509808834159. |
[2] |
A. Are, M. A. Katsoulakis and A. Szepessy, Coarse-grained Langevin approximations and spatiotemporal acceleration for kinetic Monte Carlo simulations of diffusion of interacting particles, Chin. Ann. Math. Series B, 30 (2009), 653-682.doi: 10.1007/s11401-009-0219-x. |
[3] |
L. Bin, "Numerical Method for a Parabolic Stochastic Partial Differential Equation," Master Thesis 2004-03, Chalmers University of Technology, Göteborg, Sweden, 2004. |
[4] |
D. Blömker, S. Maier-Paape and T. Wanner, Second phase spinonal decomposition for the Cahn-Hilliard-Cook equation, Transactions of the AMS, 360 (2008), 449-489.doi: 10.1090/S0002-9947-07-04387-5. |
[5] |
J. H. Bramble and S. R. Hilbert, Estimation of linear functionals on Sobolev spaces with application to Fourier transforms and spline interpolation, SIAM J. Numer. Anal., 7 (1970), 112-124.doi: 10.1137/0707006. |
[6] |
A. Debussche and L. Zambotti, Conservative stochastic Cahn-Hilliard equation with reflection, Annals of Probability, 35 (2007), 1706-1739.doi: 10.1214/009117906000000773. |
[7] |
N. Dunford and J. T. Schwartz, "Linear Operators. Part II. Spectral Theory. Self Adjoint Operators in Hilbert Space," Reprint of the 1963 original, Wiley Classics Library, A Wiley-Interscience Publication, John Wiley & Sons, Inc., New York, 1988. |
[8] |
W. Grecksch and P. E. Kloeden, Time-discretised Galerkin approximations of parabolic stochastic PDE's, Bull. Austral. Math. Soc., 54 (1996), 79-85.doi: 10.1017/S0004972700015094. |
[9] |
G. H. Golub and C. F. Van Loan, "Matrix Computations," Second Edition, The John Hopkins University Press, Baltimore, 1989. |
[10] |
P. C. Hohenberg and B. I. Halperin, Theory of dynamic critical phenomena, J. Rev. Mod. Phys., 49 (1977), 435-479.doi: 10.1103/RevModPhys.49.435. |
[11] |
G. Kallianpur and J. Xiong, "Stochastic Differential Equations in Infinite Dimensional Spaces," Institute of Mathematical Statistics, Lecture Notes-Monograph Series 26, Hayward, California, 1995. |
[12] |
M. A Katsoulakis and D. G. Vlachos, Coarse-grained stochastic processes and kinetic Monte Carlo simulators for the diffusion of interacting particles, J. Chem. Phys., 119 (2003), 9412-9427.doi: 10.1063/1.1616513. |
[13] |
P. E. Kloeden and S. Shot, Linear-implicit strong schemes for Itô-Galerkin approximations of stochastic PDE's, Journal of Applied Mathematics and Stochastic Analysis, 14 (2001), 47-53.doi: 10.1155/S1048953301000053. |
[14] |
G. T. Kossioris and G. E. Zouraris, Fully-discrete finite element approximations for a fourth-order linear stochastic parabolic equation with additive space-time white noise, Mathematical Modelling and Numerical Analysis, 44 (2010), 289-322.doi: 10.1051/m2an/2010003. |
[15] |
G. T. Kossioris and G. E. Zouraris, Finite element approximations for a linear fourth-order parabolic SPDE in two and three space dimensions with additive space-time white noise, Applied Numerical Mathematics, 67 (2013), 243-261.doi: 10.1016/j.apnum.2012.01.003. |
[16] |
S. Larsson and A. Mesforush, Finite element approximation of the linearized Cahn-Hilliard-Cook equation, IMA J. Numer. Anal., 31 (2011), 1315-1333.doi: 10.1093/imanum/drq042. |
[17] |
J. L. Lions and E. Magenes, "Non-Homogeneous Boundary Value Problems and Applications. Vol. I," Springer-Verlag, Berlin - Heidelberg, 1972. |
[18] |
J. Printems, On the discretization in time of parabolic stochastic partial differential equations, Mathematical Modelling and Numerical Analysis, 35 (2001), 1055-1078.doi: 10.1051/m2an:2001148. |
[19] |
T. M. Rogers, K. R. Elder and R. C. Desai, Numerical study of the late stages of spinodal decomposition, Physical Review B, 37 (1988), 9638-9649.doi: 10.1103/PhysRevB.37.9638. |
[20] |
V. Thomée, "Galerkin Finite Element Methods for Parabolic Problems," Spriger Series in Computational Mathematics, vol. 25, Springer-Verlag, Berlin Heidelberg, 1997. |
[21] |
Y. Yan, Galerkin finite element methods for stochastic parabolic partial differential equations, SIAM Journal on Numerical Analysis, 43 (2005), 1363-1384.doi: 10.1137/040605278. |
[22] |
J. B. Walsh, "An Introduction to Stochastic Partial Differential Equations," in "Lecture Notes in Mathematics no. 1180", Springer Verlag, 1986, 265-439.doi: 10.1007/BFb0074920. |
[23] |
J. B. Walsh, Finite element methods for parabolic stochastic PDE's, Potential Analysis, 23 (2005), 1-43.doi: 10.1007/s11118-004-2950-y. |