\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Finite element approximations for a linear Cahn-Hilliard-Cook equation driven by the space derivative of a space-time white noise

Abstract Related Papers Cited by
  • We consider an initial- and Dirichlet boundary- value problem for a linear Cahn-Hilliard-Cook equation, in one space dimension, forced by the space derivative of a space-time white noise. First, we propose an approximate stochastic parabolic problem discretizing the noise using linear splines. Then we construct fully-discrete approximations to the solution of the approximate problem using, for the discretization in space, a Galerkin finite element method based on $H^2-$piecewise polynomials, and, for time-stepping, the Backward Euler method. We derive strong a priori estimates: for the error between the solution to the problem and the solution to the approximate problem, and for the numerical approximation error of the solution to the approximate problem.
    Mathematics Subject Classification: Primary: 65M60, 65M15, 65C20.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    E. J. Allen, S. J. Novosel and Z. Zhang, Finite element and difference approximation of some linear stochastic partial differential equations, Stochastics Stochastics Rep., 64 (1998), 117-142.doi: 10.1080/17442509808834159.

    [2]

    A. Are, M. A. Katsoulakis and A. Szepessy, Coarse-grained Langevin approximations and spatiotemporal acceleration for kinetic Monte Carlo simulations of diffusion of interacting particles, Chin. Ann. Math. Series B, 30 (2009), 653-682.doi: 10.1007/s11401-009-0219-x.

    [3]

    L. Bin, "Numerical Method for a Parabolic Stochastic Partial Differential Equation," Master Thesis 2004-03, Chalmers University of Technology, Göteborg, Sweden, 2004.

    [4]

    D. Blömker, S. Maier-Paape and T. Wanner, Second phase spinonal decomposition for the Cahn-Hilliard-Cook equation, Transactions of the AMS, 360 (2008), 449-489.doi: 10.1090/S0002-9947-07-04387-5.

    [5]

    J. H. Bramble and S. R. Hilbert, Estimation of linear functionals on Sobolev spaces with application to Fourier transforms and spline interpolation, SIAM J. Numer. Anal., 7 (1970), 112-124.doi: 10.1137/0707006.

    [6]

    A. Debussche and L. Zambotti, Conservative stochastic Cahn-Hilliard equation with reflection, Annals of Probability, 35 (2007), 1706-1739.doi: 10.1214/009117906000000773.

    [7]

    N. Dunford and J. T. Schwartz, "Linear Operators. Part II. Spectral Theory. Self Adjoint Operators in Hilbert Space," Reprint of the 1963 original, Wiley Classics Library, A Wiley-Interscience Publication, John Wiley & Sons, Inc., New York, 1988.

    [8]

    W. Grecksch and P. E. Kloeden, Time-discretised Galerkin approximations of parabolic stochastic PDE's, Bull. Austral. Math. Soc., 54 (1996), 79-85.doi: 10.1017/S0004972700015094.

    [9]

    G. H. Golub and C. F. Van Loan, "Matrix Computations," Second Edition, The John Hopkins University Press, Baltimore, 1989.

    [10]

    P. C. Hohenberg and B. I. Halperin, Theory of dynamic critical phenomena, J. Rev. Mod. Phys., 49 (1977), 435-479.doi: 10.1103/RevModPhys.49.435.

    [11]

    G. Kallianpur and J. Xiong, "Stochastic Differential Equations in Infinite Dimensional Spaces," Institute of Mathematical Statistics, Lecture Notes-Monograph Series 26, Hayward, California, 1995.

    [12]

    M. A Katsoulakis and D. G. Vlachos, Coarse-grained stochastic processes and kinetic Monte Carlo simulators for the diffusion of interacting particles, J. Chem. Phys., 119 (2003), 9412-9427.doi: 10.1063/1.1616513.

    [13]

    P. E. Kloeden and S. Shot, Linear-implicit strong schemes for Itô-Galerkin approximations of stochastic PDE's, Journal of Applied Mathematics and Stochastic Analysis, 14 (2001), 47-53.doi: 10.1155/S1048953301000053.

    [14]

    G. T. Kossioris and G. E. Zouraris, Fully-discrete finite element approximations for a fourth-order linear stochastic parabolic equation with additive space-time white noise, Mathematical Modelling and Numerical Analysis, 44 (2010), 289-322.doi: 10.1051/m2an/2010003.

    [15]

    G. T. Kossioris and G. E. Zouraris, Finite element approximations for a linear fourth-order parabolic SPDE in two and three space dimensions with additive space-time white noise, Applied Numerical Mathematics, 67 (2013), 243-261.doi: 10.1016/j.apnum.2012.01.003.

    [16]

    S. Larsson and A. Mesforush, Finite element approximation of the linearized Cahn-Hilliard-Cook equation, IMA J. Numer. Anal., 31 (2011), 1315-1333.doi: 10.1093/imanum/drq042.

    [17]

    J. L. Lions and E. Magenes, "Non-Homogeneous Boundary Value Problems and Applications. Vol. I," Springer-Verlag, Berlin - Heidelberg, 1972.

    [18]

    J. Printems, On the discretization in time of parabolic stochastic partial differential equations, Mathematical Modelling and Numerical Analysis, 35 (2001), 1055-1078.doi: 10.1051/m2an:2001148.

    [19]

    T. M. Rogers, K. R. Elder and R. C. Desai, Numerical study of the late stages of spinodal decomposition, Physical Review B, 37 (1988), 9638-9649.doi: 10.1103/PhysRevB.37.9638.

    [20]

    V. Thomée, "Galerkin Finite Element Methods for Parabolic Problems," Spriger Series in Computational Mathematics, vol. 25, Springer-Verlag, Berlin Heidelberg, 1997.

    [21]

    Y. Yan, Galerkin finite element methods for stochastic parabolic partial differential equations, SIAM Journal on Numerical Analysis, 43 (2005), 1363-1384.doi: 10.1137/040605278.

    [22]

    J. B. Walsh, "An Introduction to Stochastic Partial Differential Equations," in "Lecture Notes in Mathematics no. 1180", Springer Verlag, 1986, 265-439.doi: 10.1007/BFb0074920.

    [23]

    J. B. Walsh, Finite element methods for parabolic stochastic PDE's, Potential Analysis, 23 (2005), 1-43.doi: 10.1007/s11118-004-2950-y.

  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(103) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return