-
Previous Article
Time dependent perturbation in a non-autonomous non-classical parabolic equation
- DCDS-B Home
- This Issue
-
Next Article
A note on the global stability of an SEIR epidemic model with constant latency time and infectious period
Direct exponential ordering for neutral compartmental systems with non-autonomous $\mathbf{D}$-operator
1. | Departamento de Matemática Aplicada, Escuela de Ingenierías Industriales and member of IMUVA, Instituto de Matemáticas, Universidad de Valladolid, 47011 Valladolid, Spain |
2. | Departamento de Matemática Aplicada, Escuela de Ingenierías Industriales, Universidad de Valladolid, 47011 Valladolid, Spain |
References:
[1] |
O. Arino and F. Bourad, On the asymptotic behavior of the solutions of a class of scalar neutral equations generating a monotone semiflow, J. Differential Equations, 87 (1990), 84-95. |
[2] |
O. Arino and E. Haourigui, On the asymptotic behavior of solutions of some delay differential systems which have a first integral, J. Math. Anal. Appl., 122 (1987), 36-46.
doi: 10.1016/0022-247X(87)90342-8. |
[3] |
R. Ellis, "Lectures on Topological Dynamics," Benjamin, New York, 1969. |
[4] |
A. M. Fink, "Almost Periodic Differential Equations," Lecture Notes in Mathematics Springer-Verlag, Berlin, Heidelberg, New York, 377 (1974), viii+336 pp. |
[5] |
I. Gy\Hori, Connections between compartmental systems with pipes and integro-differential equations, Math. Modelling, 7 (1986), 1215-1238.
doi: 10.1016/0270-0255(86)90077-1. |
[6] |
I. Gy\Hori and J. Eller, Compartmental systems with pipes, Math. Biosci., 53 (1981), 223-247.
doi: 10.1016/0025-5564(81)90019-5. |
[7] |
I. Gy\Hori and J. Wu, A neutral equation arising from compartmental systems with pipes, J. Dynam. Differential Equations, 3 (1991), 289-311. |
[8] |
W. M. Haddad, V. Chellaboina and Q. Hui, "Nonnegative and Compartmental Dynamical Systems," Princeton University Press, 2010. |
[9] |
J. K. Hale, "Theory of Functional Differential Equations," Applied Mathematical Sciences vol. 3, Springer-Verlag, Berlin, Heidelberg, New York, 1977. |
[10] |
J. K. Hale and S. M. Verduyn Lunel, "Introduction to Functional Differential Equations," Applied Mathematical Sciences vol. 99, Springer-Verlag, Berlin, Heidelberg, New York, 1993. |
[11] |
Y. Hino, S. Murakami and T. Naito, "Functional Differential Equations with Infinite Delay," Lecture Notes in Math., vol. 1473, Springer-Verlag, Berlin, Heidelberg, 1991. |
[12] |
J. A. Jacquez, "Compartmental Analysis in Biology and Medicine," Third Edition, Thomson-Shore Inc., Ann Arbor, Michigan, 1996. |
[13] |
J. A. Jacquez and C. P. Simon, Qualitative theory of compartmental systems, SIAM Review, 35 (1993), 43-79.
doi: 10.1137/1035003. |
[14] |
J. Jiang and X.-Q. Zhao, Convergence in monotone and uniformly stable skew-product semiflows with applications, J. Reine Angew. Math., 589 (2005), 21-55.
doi: 10.1515/crll.2005.2005.589.21. |
[15] |
T. Krisztin and J. Wu, Asymptotic periodicity, monotonicity, and oscillation of solutions of scalar neutral functional differential equations, J. Math. Anal. Appl., 199 (1996), 502-525.
doi: 10.1006/jmaa.1996.0158. |
[16] |
V. Mu\ noz-Villarragut, S. Novo and R. Obaya, Neutral functional differential equations with applications to compartmental systems, SIAM J. Math. Anal., 40 (2008), 1003-1028.
doi: 10.1137/070711177. |
[17] |
S. Novo, R. Obaya and A. M. Sanz, Stability and extensibility results for abstract skew-product semiflows, J. Differential Equations, 235 (2007), 623-646. |
[18] |
S. Novo, R. Obaya and V. M. Villarragut, Exponential ordering for nonautonomous neutral functional differential equations, SIAM J. Math. Anal., 41 (2009), 1025-1053.
doi: 10.1137/080744682. |
[19] |
R. Obaya and V. M. Villarragut, Exponential ordering for neutral functional differential equations with non-autonomous linear $D$-operator, J. Dyn. Diff. Equat., 23 (2011), 695-725.
doi: 10.1007/s10884-011-9210-9. |
[20] |
R. J. Sacker and G. R. Sell, "Lifting Properties in Skew-Products Flows with Applications to Differential Equations," Mem. Amer. Math. Soc., vol. 190, Amer. Math. Soc., Providence, 1977. |
[21] |
W. X. Shen and Y. F. Yi, "Almost Automorphic and Almost Periodic Dynamics in Skew-Product Semiflows," Mem. Amer. Math. Soc., 136 (1998), x+93 pp. |
[22] |
Z. Wang and J. Wu, Neutral functional differential equations with infinite delay, Funkcial. Ekvac., 28 (1985), 157-170. |
[23] |
J. Wu, Unified treatment of local theory of NFDEs with infinite delay, Tamkang J. Math., 22 (1991), 51-72. |
[24] |
J. Wu and H. I. Freedman, Monotone semiflows generated by neutral functional differential equations with application to compartmental systems, Can. J. Math., 43 (1991), 1098-1120.
doi: 10.4153/CJM-1991-064-1. |
show all references
References:
[1] |
O. Arino and F. Bourad, On the asymptotic behavior of the solutions of a class of scalar neutral equations generating a monotone semiflow, J. Differential Equations, 87 (1990), 84-95. |
[2] |
O. Arino and E. Haourigui, On the asymptotic behavior of solutions of some delay differential systems which have a first integral, J. Math. Anal. Appl., 122 (1987), 36-46.
doi: 10.1016/0022-247X(87)90342-8. |
[3] |
R. Ellis, "Lectures on Topological Dynamics," Benjamin, New York, 1969. |
[4] |
A. M. Fink, "Almost Periodic Differential Equations," Lecture Notes in Mathematics Springer-Verlag, Berlin, Heidelberg, New York, 377 (1974), viii+336 pp. |
[5] |
I. Gy\Hori, Connections between compartmental systems with pipes and integro-differential equations, Math. Modelling, 7 (1986), 1215-1238.
doi: 10.1016/0270-0255(86)90077-1. |
[6] |
I. Gy\Hori and J. Eller, Compartmental systems with pipes, Math. Biosci., 53 (1981), 223-247.
doi: 10.1016/0025-5564(81)90019-5. |
[7] |
I. Gy\Hori and J. Wu, A neutral equation arising from compartmental systems with pipes, J. Dynam. Differential Equations, 3 (1991), 289-311. |
[8] |
W. M. Haddad, V. Chellaboina and Q. Hui, "Nonnegative and Compartmental Dynamical Systems," Princeton University Press, 2010. |
[9] |
J. K. Hale, "Theory of Functional Differential Equations," Applied Mathematical Sciences vol. 3, Springer-Verlag, Berlin, Heidelberg, New York, 1977. |
[10] |
J. K. Hale and S. M. Verduyn Lunel, "Introduction to Functional Differential Equations," Applied Mathematical Sciences vol. 99, Springer-Verlag, Berlin, Heidelberg, New York, 1993. |
[11] |
Y. Hino, S. Murakami and T. Naito, "Functional Differential Equations with Infinite Delay," Lecture Notes in Math., vol. 1473, Springer-Verlag, Berlin, Heidelberg, 1991. |
[12] |
J. A. Jacquez, "Compartmental Analysis in Biology and Medicine," Third Edition, Thomson-Shore Inc., Ann Arbor, Michigan, 1996. |
[13] |
J. A. Jacquez and C. P. Simon, Qualitative theory of compartmental systems, SIAM Review, 35 (1993), 43-79.
doi: 10.1137/1035003. |
[14] |
J. Jiang and X.-Q. Zhao, Convergence in monotone and uniformly stable skew-product semiflows with applications, J. Reine Angew. Math., 589 (2005), 21-55.
doi: 10.1515/crll.2005.2005.589.21. |
[15] |
T. Krisztin and J. Wu, Asymptotic periodicity, monotonicity, and oscillation of solutions of scalar neutral functional differential equations, J. Math. Anal. Appl., 199 (1996), 502-525.
doi: 10.1006/jmaa.1996.0158. |
[16] |
V. Mu\ noz-Villarragut, S. Novo and R. Obaya, Neutral functional differential equations with applications to compartmental systems, SIAM J. Math. Anal., 40 (2008), 1003-1028.
doi: 10.1137/070711177. |
[17] |
S. Novo, R. Obaya and A. M. Sanz, Stability and extensibility results for abstract skew-product semiflows, J. Differential Equations, 235 (2007), 623-646. |
[18] |
S. Novo, R. Obaya and V. M. Villarragut, Exponential ordering for nonautonomous neutral functional differential equations, SIAM J. Math. Anal., 41 (2009), 1025-1053.
doi: 10.1137/080744682. |
[19] |
R. Obaya and V. M. Villarragut, Exponential ordering for neutral functional differential equations with non-autonomous linear $D$-operator, J. Dyn. Diff. Equat., 23 (2011), 695-725.
doi: 10.1007/s10884-011-9210-9. |
[20] |
R. J. Sacker and G. R. Sell, "Lifting Properties in Skew-Products Flows with Applications to Differential Equations," Mem. Amer. Math. Soc., vol. 190, Amer. Math. Soc., Providence, 1977. |
[21] |
W. X. Shen and Y. F. Yi, "Almost Automorphic and Almost Periodic Dynamics in Skew-Product Semiflows," Mem. Amer. Math. Soc., 136 (1998), x+93 pp. |
[22] |
Z. Wang and J. Wu, Neutral functional differential equations with infinite delay, Funkcial. Ekvac., 28 (1985), 157-170. |
[23] |
J. Wu, Unified treatment of local theory of NFDEs with infinite delay, Tamkang J. Math., 22 (1991), 51-72. |
[24] |
J. Wu and H. I. Freedman, Monotone semiflows generated by neutral functional differential equations with application to compartmental systems, Can. J. Math., 43 (1991), 1098-1120.
doi: 10.4153/CJM-1991-064-1. |
[1] |
Sylvia Novo, Carmen Núñez, Rafael Obaya, Ana M. Sanz. Skew-product semiflows for non-autonomous partial functional differential equations with delay. Discrete and Continuous Dynamical Systems, 2014, 34 (10) : 4291-4321. doi: 10.3934/dcds.2014.34.4291 |
[2] |
Juan A. Calzada, Rafael Obaya, Ana M. Sanz. Continuous separation for monotone skew-product semiflows: From theoretical to numerical results. Discrete and Continuous Dynamical Systems - B, 2015, 20 (3) : 915-944. doi: 10.3934/dcdsb.2015.20.915 |
[3] |
Alexandre N. Carvalho, José A. Langa, James C. Robinson. Non-autonomous dynamical systems. Discrete and Continuous Dynamical Systems - B, 2015, 20 (3) : 703-747. doi: 10.3934/dcdsb.2015.20.703 |
[4] |
Saša Kocić. Reducibility of skew-product systems with multidimensional Brjuno base flows. Discrete and Continuous Dynamical Systems, 2011, 29 (1) : 261-283. doi: 10.3934/dcds.2011.29.261 |
[5] |
Tomás Caraballo, Alexandre N. Carvalho, Henrique B. da Costa, José A. Langa. Equi-attraction and continuity of attractors for skew-product semiflows. Discrete and Continuous Dynamical Systems - B, 2016, 21 (9) : 2949-2967. doi: 10.3934/dcdsb.2016081 |
[6] |
David Cheban, Cristiana Mammana. Continuous dependence of attractors on parameters of non-autonomous dynamical systems and infinite iterated function systems. Discrete and Continuous Dynamical Systems, 2007, 18 (2&3) : 499-515. doi: 10.3934/dcds.2007.18.499 |
[7] |
Rafael Obaya, Ana M. Sanz. Persistence in non-autonomous quasimonotone parabolic partial functional differential equations with delay. Discrete and Continuous Dynamical Systems - B, 2019, 24 (8) : 3947-3970. doi: 10.3934/dcdsb.2018338 |
[8] |
Tomás Caraballo, David Cheban. On the structure of the global attractor for infinite-dimensional non-autonomous dynamical systems with weak convergence. Communications on Pure and Applied Analysis, 2013, 12 (1) : 281-302. doi: 10.3934/cpaa.2013.12.281 |
[9] |
Xinyuan Liao, Caidi Zhao, Shengfan Zhou. Compact uniform attractors for dissipative non-autonomous lattice dynamical systems. Communications on Pure and Applied Analysis, 2007, 6 (4) : 1087-1111. doi: 10.3934/cpaa.2007.6.1087 |
[10] |
Grzegorz Łukaszewicz, James C. Robinson. Invariant measures for non-autonomous dissipative dynamical systems. Discrete and Continuous Dynamical Systems, 2014, 34 (10) : 4211-4222. doi: 10.3934/dcds.2014.34.4211 |
[11] |
Michael Zgurovsky, Mark Gluzman, Nataliia Gorban, Pavlo Kasyanov, Liliia Paliichuk, Olha Khomenko. Uniform global attractors for non-autonomous dissipative dynamical systems. Discrete and Continuous Dynamical Systems - B, 2017, 22 (5) : 2053-2065. doi: 10.3934/dcdsb.2017120 |
[12] |
Michael Dellnitz, Christian Horenkamp. The efficient approximation of coherent pairs in non-autonomous dynamical systems. Discrete and Continuous Dynamical Systems, 2012, 32 (9) : 3029-3042. doi: 10.3934/dcds.2012.32.3029 |
[13] |
Tomás Caraballo, David Cheban. On the structure of the global attractor for non-autonomous dynamical systems with weak convergence. Communications on Pure and Applied Analysis, 2012, 11 (2) : 809-828. doi: 10.3934/cpaa.2012.11.809 |
[14] |
Bixiang Wang. Multivalued non-autonomous random dynamical systems for wave equations without uniqueness. Discrete and Continuous Dynamical Systems - B, 2017, 22 (5) : 2011-2051. doi: 10.3934/dcdsb.2017119 |
[15] |
Fuke Wu, Shigeng Hu. The LaSalle-type theorem for neutral stochastic functional differential equations with infinite delay. Discrete and Continuous Dynamical Systems, 2012, 32 (3) : 1065-1094. doi: 10.3934/dcds.2012.32.1065 |
[16] |
Eduardo Hernández, Donal O'Regan. $C^{\alpha}$-Hölder classical solutions for non-autonomous neutral differential equations. Discrete and Continuous Dynamical Systems, 2011, 29 (1) : 241-260. doi: 10.3934/dcds.2011.29.241 |
[17] |
Rodrigo Samprogna, Tomás Caraballo. Pullback attractor for a dynamic boundary non-autonomous problem with Infinite Delay. Discrete and Continuous Dynamical Systems - B, 2018, 23 (2) : 509-523. doi: 10.3934/dcdsb.2017195 |
[18] |
Birgit Jacob, Hafida Laasri. Well-posedness of infinite-dimensional non-autonomous passive boundary control systems. Evolution Equations and Control Theory, 2021, 10 (2) : 385-409. doi: 10.3934/eect.2020072 |
[19] |
Iacopo P. Longo, Sylvia Novo, Rafael Obaya. Topologies of continuity for Carathéodory delay differential equations with applications in non-autonomous dynamics. Discrete and Continuous Dynamical Systems, 2019, 39 (9) : 5491-5520. doi: 10.3934/dcds.2019224 |
[20] |
Emma D'Aniello, Saber Elaydi. The structure of $ \omega $-limit sets of asymptotically non-autonomous discrete dynamical systems. Discrete and Continuous Dynamical Systems - B, 2020, 25 (3) : 903-915. doi: 10.3934/dcdsb.2019195 |
2020 Impact Factor: 1.327
Tools
Metrics
Other articles
by authors
[Back to Top]