- Previous Article
- DCDS-B Home
- This Issue
-
Next Article
Traveling waves in a nonlocal dispersal Kermack-McKendrick epidemic model
An erratum note on the paper: Positive periodic solution for Brillouin electron beam focusing system
1. | School of Mathematical Sciences, Capital Normal University, Beijing 100048 |
2. | School of Mathematical Sciences, Capital Normal University, Beijing, 100048, China |
3. | School of Mathematical Sciences, Beijing Normal University, Beijing 100875, China |
References:
[1] |
J. Ren, Z. Cheng and S. Siegmund, Positive periodic solution for Brillouin electron beam focusing system, Discrete Contin. Dyn. Syst. Ser. B, 16 (2011), 385-392.
doi: 10.3934/dcdsb.2011.16.385. |
[2] |
V. Bevc, J. L. Palmer and C. Süsskind, On the design of the transition region of axisymmetric magnetically focused beam values, J. British Inst. Radio Engineers, 18 (1958), 696-708. |
[3] |
R. Ortega, Periodic perturbations of an isochronous center, Qual. Theory Dyn. Syst., 3 (2002), 83-91.
doi: 10.1007/BF02969334. |
[4] |
D. Bonheure, C. Fabry and D. Smets, Periodic solutions of forced isochronous oscillators at resonance, Discrete Contin. Dyn. Syst., 8 (2002), 907-930.
doi: 10.3934/dcds.2002.8.907. |
[5] |
T. Ding, A boundary value problem for the periodic Brillouin focusing system, Acta Sci. Natur. Univ. Pekinensis, 11 (1965), 31-38. |
[6] |
Y. Ye and X. Wang, Nonlinear differential equations in electron beam focusing theory, Acta Math. Appl. Sinica, 1 (1978), 13-41. |
[7] |
M. R. Zhang, A relationship between the periodic and the Dirichlet BVPs of singular differential equation, Proc. Roy. Soc. Edinburgh, Sect. A, 128 (1998), 1099-1114.
doi: 10.1017/S0308210500030080. |
show all references
References:
[1] |
J. Ren, Z. Cheng and S. Siegmund, Positive periodic solution for Brillouin electron beam focusing system, Discrete Contin. Dyn. Syst. Ser. B, 16 (2011), 385-392.
doi: 10.3934/dcdsb.2011.16.385. |
[2] |
V. Bevc, J. L. Palmer and C. Süsskind, On the design of the transition region of axisymmetric magnetically focused beam values, J. British Inst. Radio Engineers, 18 (1958), 696-708. |
[3] |
R. Ortega, Periodic perturbations of an isochronous center, Qual. Theory Dyn. Syst., 3 (2002), 83-91.
doi: 10.1007/BF02969334. |
[4] |
D. Bonheure, C. Fabry and D. Smets, Periodic solutions of forced isochronous oscillators at resonance, Discrete Contin. Dyn. Syst., 8 (2002), 907-930.
doi: 10.3934/dcds.2002.8.907. |
[5] |
T. Ding, A boundary value problem for the periodic Brillouin focusing system, Acta Sci. Natur. Univ. Pekinensis, 11 (1965), 31-38. |
[6] |
Y. Ye and X. Wang, Nonlinear differential equations in electron beam focusing theory, Acta Math. Appl. Sinica, 1 (1978), 13-41. |
[7] |
M. R. Zhang, A relationship between the periodic and the Dirichlet BVPs of singular differential equation, Proc. Roy. Soc. Edinburgh, Sect. A, 128 (1998), 1099-1114.
doi: 10.1017/S0308210500030080. |
[1] |
Jingli Ren, Zhibo Cheng, Stefan Siegmund. Positive periodic solution for Brillouin electron beam focusing system. Discrete and Continuous Dynamical Systems - B, 2011, 16 (1) : 385-392. doi: 10.3934/dcdsb.2011.16.385 |
[2] |
Maurizio Garrione, Manuel Zamora. Periodic solutions of the Brillouin electron beam focusing equation. Communications on Pure and Applied Analysis, 2014, 13 (2) : 961-975. doi: 10.3934/cpaa.2014.13.961 |
[3] |
Tomás Caraballo, David Cheban. Almost periodic and asymptotically almost periodic solutions of Liénard equations. Discrete and Continuous Dynamical Systems - B, 2011, 16 (3) : 703-717. doi: 10.3934/dcdsb.2011.16.703 |
[4] |
Wenbin Liu, Zhaosheng Feng. Periodic solutions for $p$-Laplacian systems of Liénard-type. Communications on Pure and Applied Analysis, 2011, 10 (5) : 1393-1400. doi: 10.3934/cpaa.2011.10.1393 |
[5] |
Tiantian Ma, Zaihong Wang. Periodic solutions of Liénard equations with resonant isochronous potentials. Discrete and Continuous Dynamical Systems, 2013, 33 (4) : 1563-1581. doi: 10.3934/dcds.2013.33.1563 |
[6] |
Fangfang Jiang, Junping Shi, Qing-guo Wang, Jitao Sun. On the existence and uniqueness of a limit cycle for a Liénard system with a discontinuity line. Communications on Pure and Applied Analysis, 2016, 15 (6) : 2509-2526. doi: 10.3934/cpaa.2016047 |
[7] |
Jitsuro Sugie, Tadayuki Hara. Existence and non-existence of homoclinic trajectories of the Liénard system. Discrete and Continuous Dynamical Systems, 1996, 2 (2) : 237-254. doi: 10.3934/dcds.1996.2.237 |
[8] |
Min Hu, Tao Li, Xingwu Chen. Bi-center problem and Hopf cyclicity of a Cubic Liénard system. Discrete and Continuous Dynamical Systems - B, 2020, 25 (1) : 401-414. doi: 10.3934/dcdsb.2019187 |
[9] |
Mats Gyllenberg, Yan Ping. The generalized Liénard systems. Discrete and Continuous Dynamical Systems, 2002, 8 (4) : 1043-1057. doi: 10.3934/dcds.2002.8.1043 |
[10] |
Yanling Shi, Junxiang Xu. Quasi-periodic solutions for a class of beam equation system. Discrete and Continuous Dynamical Systems - B, 2020, 25 (1) : 31-53. doi: 10.3934/dcdsb.2019171 |
[11] |
Na Li, Maoan Han, Valery G. Romanovski. Cyclicity of some Liénard Systems. Communications on Pure and Applied Analysis, 2015, 14 (6) : 2127-2150. doi: 10.3934/cpaa.2015.14.2127 |
[12] |
Hong Li. Bifurcation of limit cycles from a Li$ \acute{E} $nard system with asymmetric figure eight-loop case. Discrete and Continuous Dynamical Systems - S, 2022 doi: 10.3934/dcdss.2022033 |
[13] |
A. Ghose Choudhury, Partha Guha. Chiellini integrability condition, planar isochronous systems and Hamiltonian structures of Liénard equation. Discrete and Continuous Dynamical Systems - B, 2017, 22 (6) : 2465-2478. doi: 10.3934/dcdsb.2017126 |
[14] |
Jaume Llibre, Claudia Valls. On the analytic integrability of the Liénard analytic differential systems. Discrete and Continuous Dynamical Systems - B, 2016, 21 (2) : 557-573. doi: 10.3934/dcdsb.2016.21.557 |
[15] |
Bin Liu. Quasiperiodic solutions of semilinear Liénard equations. Discrete and Continuous Dynamical Systems, 2005, 12 (1) : 137-160. doi: 10.3934/dcds.2005.12.137 |
[16] |
Robert Roussarie. Putting a boundary to the space of Liénard equations. Discrete and Continuous Dynamical Systems, 2007, 17 (2) : 441-448. doi: 10.3934/dcds.2007.17.441 |
[17] |
Alexandre Mouton. Two-scale semi-Lagrangian simulation of a charged particle beam in a periodic focusing channel. Kinetic and Related Models, 2009, 2 (2) : 251-274. doi: 10.3934/krm.2009.2.251 |
[18] |
Jitka Machalová, Horymír Netuka. Optimal control of system governed by the Gao beam equation. Conference Publications, 2015, 2015 (special) : 783-792. doi: 10.3934/proc.2015.0783 |
[19] |
Isaac A. García, Jaume Giné, Jaume Llibre. Liénard and Riccati differential equations related via Lie Algebras. Discrete and Continuous Dynamical Systems - B, 2008, 10 (2&3, September) : 485-494. doi: 10.3934/dcdsb.2008.10.485 |
[20] |
Zhenguo Liang, Jiansheng Geng. Quasi-periodic solutions for 1D resonant beam equation. Communications on Pure and Applied Analysis, 2006, 5 (4) : 839-853. doi: 10.3934/cpaa.2006.5.839 |
2021 Impact Factor: 1.497
Tools
Metrics
Other articles
by authors
[Back to Top]