- Previous Article
- DCDS-B Home
- This Issue
-
Next Article
Traveling waves in a nonlocal dispersal Kermack-McKendrick epidemic model
An erratum note on the paper: Positive periodic solution for Brillouin electron beam focusing system
1. | School of Mathematical Sciences, Capital Normal University, Beijing 100048 |
2. | School of Mathematical Sciences, Capital Normal University, Beijing, 100048, China |
3. | School of Mathematical Sciences, Beijing Normal University, Beijing 100875, China |
References:
[1] |
Discrete Contin. Dyn. Syst. Ser. B, 16 (2011), 385-392.
doi: 10.3934/dcdsb.2011.16.385. |
[2] |
J. British Inst. Radio Engineers, 18 (1958), 696-708. Google Scholar |
[3] |
Qual. Theory Dyn. Syst., 3 (2002), 83-91.
doi: 10.1007/BF02969334. |
[4] |
Discrete Contin. Dyn. Syst., 8 (2002), 907-930.
doi: 10.3934/dcds.2002.8.907. |
[5] |
Acta Sci. Natur. Univ. Pekinensis, 11 (1965), 31-38. Google Scholar |
[6] |
Acta Math. Appl. Sinica, 1 (1978), 13-41. |
[7] |
Proc. Roy. Soc. Edinburgh, Sect. A, 128 (1998), 1099-1114.
doi: 10.1017/S0308210500030080. |
show all references
References:
[1] |
Discrete Contin. Dyn. Syst. Ser. B, 16 (2011), 385-392.
doi: 10.3934/dcdsb.2011.16.385. |
[2] |
J. British Inst. Radio Engineers, 18 (1958), 696-708. Google Scholar |
[3] |
Qual. Theory Dyn. Syst., 3 (2002), 83-91.
doi: 10.1007/BF02969334. |
[4] |
Discrete Contin. Dyn. Syst., 8 (2002), 907-930.
doi: 10.3934/dcds.2002.8.907. |
[5] |
Acta Sci. Natur. Univ. Pekinensis, 11 (1965), 31-38. Google Scholar |
[6] |
Acta Math. Appl. Sinica, 1 (1978), 13-41. |
[7] |
Proc. Roy. Soc. Edinburgh, Sect. A, 128 (1998), 1099-1114.
doi: 10.1017/S0308210500030080. |
[1] |
Vladimir Georgiev, Sandra Lucente. Focusing nlkg equation with singular potential. Communications on Pure & Applied Analysis, 2018, 17 (4) : 1387-1406. doi: 10.3934/cpaa.2018068 |
[2] |
Julian Tugaut. Captivity of the solution to the granular media equation. Kinetic & Related Models, 2021, 14 (2) : 199-209. doi: 10.3934/krm.2021002 |
[3] |
Bochao Chen, Yixian Gao. Quasi-periodic travelling waves for beam equations with damping on 3-dimensional rectangular tori. Discrete & Continuous Dynamical Systems - B, 2021 doi: 10.3934/dcdsb.2021075 |
[4] |
Yumi Yahagi. Construction of unique mild solution and continuity of solution for the small initial data to 1-D Keller-Segel system. Discrete & Continuous Dynamical Systems - B, 2021 doi: 10.3934/dcdsb.2021099 |
[5] |
Tian Hou, Yi Wang, Xizhuang Xie. Instability and bifurcation of a cooperative system with periodic coefficients. Electronic Research Archive, , () : -. doi: 10.3934/era.2021026 |
[6] |
Meng-Xue Chang, Bang-Sheng Han, Xiao-Ming Fan. Global dynamics of the solution for a bistable reaction diffusion equation with nonlocal effect. Electronic Research Archive, , () : -. doi: 10.3934/era.2021024 |
[7] |
Ahmad El Hajj, Hassan Ibrahim, Vivian Rizik. $ BV $ solution for a non-linear Hamilton-Jacobi system. Discrete & Continuous Dynamical Systems, 2021, 41 (7) : 3273-3293. doi: 10.3934/dcds.2020405 |
[8] |
Jing Li, Gui-Quan Sun, Zhen Jin. Interactions of time delay and spatial diffusion induce the periodic oscillation of the vegetation system. Discrete & Continuous Dynamical Systems - B, 2021 doi: 10.3934/dcdsb.2021127 |
[9] |
Changpin Li, Zhiqiang Li. Asymptotic behaviors of solution to partial differential equation with Caputo–Hadamard derivative and fractional Laplacian: Hyperbolic case. Discrete & Continuous Dynamical Systems - S, 2021 doi: 10.3934/dcdss.2021023 |
[10] |
Yanling Shi, Junxiang Xu. Quasi-periodic solutions for nonlinear wave equation with Liouvillean frequency. Discrete & Continuous Dynamical Systems - B, 2021, 26 (7) : 3479-3490. doi: 10.3934/dcdsb.2020241 |
[11] |
Zhiming Guo, Zhi-Chun Yang, Xingfu Zou. Existence and uniqueness of positive solution to a non-local differential equation with homogeneous Dirichlet boundary condition---A non-monotone case. Communications on Pure & Applied Analysis, 2012, 11 (5) : 1825-1838. doi: 10.3934/cpaa.2012.11.1825 |
[12] |
Demou Luo, Qiru Wang. Dynamic analysis on an almost periodic predator-prey system with impulsive effects and time delays. Discrete & Continuous Dynamical Systems - B, 2021, 26 (6) : 3427-3453. doi: 10.3934/dcdsb.2020238 |
[13] |
Rong Rong, Yi Peng. KdV-type equation limit for ion dynamics system. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021037 |
[14] |
Yingte Sun. Floquet solutions for the Schrödinger equation with fast-oscillating quasi-periodic potentials. Discrete & Continuous Dynamical Systems, 2021 doi: 10.3934/dcds.2021047 |
[15] |
Siqi Chen, Yong-Kui Chang, Yanyan Wei. Pseudo $ S $-asymptotically Bloch type periodic solutions to a damped evolution equation. Evolution Equations & Control Theory, 2021 doi: 10.3934/eect.2021017 |
[16] |
Anderson L. A. de Araujo, Marcelo Montenegro. Existence of solution and asymptotic behavior for a class of parabolic equations. Communications on Pure & Applied Analysis, 2021, 20 (3) : 1213-1227. doi: 10.3934/cpaa.2021017 |
[17] |
Burcu Gürbüz. A computational approximation for the solution of retarded functional differential equations and their applications to science and engineering. Journal of Industrial & Management Optimization, 2021 doi: 10.3934/jimo.2021069 |
[18] |
V. V. Zhikov, S. E. Pastukhova. Korn inequalities on thin periodic structures. Networks & Heterogeneous Media, 2009, 4 (1) : 153-175. doi: 10.3934/nhm.2009.4.153 |
[19] |
Giovanni Cimatti. Forced periodic solutions for piezoelectric crystals. Communications on Pure & Applied Analysis, 2005, 4 (2) : 475-485. doi: 10.3934/cpaa.2005.4.475 |
[20] |
Qigang Yuan, Jingli Ren. Periodic forcing on degenerate Hopf bifurcation. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2857-2877. doi: 10.3934/dcdsb.2020208 |
2019 Impact Factor: 1.27
Tools
Metrics
Other articles
by authors
[Back to Top]