Citation: |
[1] |
J. R. Beddington and J. G. Cooke, Harvesting from a prey-predator complex, Ecol. Modelling, 14 (1982), 155-177.doi: 10.1016/0304-3800(82)90016-3. |
[2] |
J. R. Beddington and R. M. May, Maximum sustainable yields in systems subject to harvesting at more than one trophic level, Math. Biosci., 51 (1980), 261-281.doi: 10.1016/0025-5564(80)90103-0. |
[3] |
R. I. Bogdanov, Bifurcations of a limit cycle for a family of vector fields on the plane, Trudy Sem. Petrovsk. Vyp., 2 (1976), 23-35. |
[4] |
R. I. Bogdanov, The versal deformations of a singular point on the plane in the case of zero eigenvalues, Trudy Sem. Petrovsk. Vyp., 2 (1976), 37-65. |
[5] |
F. Brauer and A. C. Soudack, Stability regions and transition phenomena for harvested predator-prey systems, J. Math. Biol., 7 (1979), 319-337.doi: 10.1007/BF00275152. |
[6] |
F. Brauer and A. C. Soudack, Stability regions in predator-prey systems with constant-rate prey harvesting, J. Math. Biol., 8 (1979), 55-71.doi: 10.1007/BF00280586. |
[7] |
F. Brauer and A. C. Soudack, Coexistence properties of some predator-prey systems under constant rate harvesting and stocking, J. Math. Biol., 12 (1981), 101-114.doi: 10.1007/BF00275206. |
[8] |
L. Cai, G. Chen and D. Xiao, Multiparametric bifurcations of an epidemiological model with strong Allee effect, J. Math. Biol., 67 (2013), 185-215.doi: 10.1007/s00285-012-0546-5. |
[9] |
V. Christensen, Managing fisheries involving predator and prey species, Rev. Fish Biol. Fisher., 6 (1996), 417-442.doi: 10.1007/BF00164324. |
[10] |
C. W. Clark, "Mathematical Bioeconomics. The Optimal Management of Renewable Resources," Second edition, Pure and Applied Mathematics (New York), A Wiley-Interscience Publication, John Wiley & Sons, New York, 1990. |
[11] |
S.-N. Chow, C. Li and D. Wang, "Normal Forms and Bifurcation of Planar Vector Fields," Cambridge University Press, Cambridge, 1994.doi: 10.1017/CBO9780511665639. |
[12] |
G. Dai and M. Tang, Coexistence region and global dynamics of a harvested predator-prey system, SIAM J. Appl. Math., 58 (1998), 193-210.doi: 10.1137/S0036139994275799. |
[13] |
F. Dumortier, R. Roussarie and J. Sotomayor, Generic 3-parameter families of vector fields on the plane, unfolding a singularity with nilpotent linear part. The cusp case of codimension 3, Ergodic Theor. Dyn. Syst., 7 (1987), 375-413.doi: 10.1017/S0143385700004119. |
[14] |
R. M. Etoua and C. Rousseau, Bifurcation analysis of a generalized Gause model with prey harvesting and a generalized Holling response function of type III, J. Differential Equations, 249 (2010), 2316-2356.doi: 10.1016/j.jde.2010.06.021. |
[15] |
O. Flaaten, On the bioeconomics of predator-prey fishing, Fish. Research, 37 (1998), 179-191.doi: 10.1016/S0165-7836(98)00135-0. |
[16] |
Y. Gong and J. Huang, Bogdanov-Takens bifurcation in a Leslie-Gower predator-prey model with prey harvesting, Acta Math. Appl. Sinica Eng. Ser. (accepted). |
[17] |
S. L. Hill, E. J. Murphy, K. Reid, P. N. Trathan and A. J. Constable, Modelling Southern Ocean ecosystems: Krill, the food-web, and the impacts of harvesting, Biol. Rev., 81 (2006), 581-608. |
[18] |
W. L. Hogarth, J. Norbury, I. Cunning and K. Sommers, Stability of a predator-prey model with harvesting, Ecol. Modelling, 62 (1992), 83-106.doi: 10.1016/0304-3800(92)90083-Q. |
[19] |
J. A. Hutchings, Collapse and recovery of marine fishes, Nature, 406 (2000), 882-885. |
[20] |
J. A. Hutchings and R. A. Myers, What can be learned from the collapse of a renewable resource? Atlantic code, Gadus morhua, of Newfoundland and Labrador, Can. J. Fish. Aquat. Sci., 51 (1994), 2126-2146. |
[21] |
S. B. Hsu and T. W. Huang, Global stability for a class of predator-prey system, SIAM J. Appl. Math., 55 (1995), 763-783.doi: 10.1137/S0036139993253201. |
[22] |
Y. Lamontagne, C. Coutu and C. Rousseau, Bifurcation analysis of a predator-prey system with generalized Holling type III functional response, J. Dynam. Differential Equations, 20 (2008), 535-571.doi: 10.1007/s10884-008-9102-9. |
[23] |
B. Leard, C. Lewis and J. Rebaza, Dynamics of ratio-dependent predator-prey models with nonconstant harvesting, Discrete Contin. Dynam. Syst. Ser. S, 1 (2008), 303-315.doi: 10.3934/dcdss.2008.1.303. |
[24] |
R. May, J. R. Beddington, C. W. Clark, S. J. Holt and R. M. Laws, Management of multispecies fisheries, Science, 205 (1979), 267-277.doi: 10.1126/science.205.4403.267. |
[25] |
R. A. Myers, J. A. Hutchings and N. J. Barrowman, Why do fish stocks collapse? The example of cod in Atlantic Canada, Ecol. Appl., 7 (1997), 91-106. |
[26] |
R. A. Myers and B. Worm, Rapid worldwide depletion of large predatory fish communities, Nature, 423 (2003), 280-283. |
[27] |
M. R. Myerscough, B. F. Gray, W. L. Hograth and J. Norbury, An analysis of an ordinary differential equation model for a two-species predator-prey system with harvesting and stocking, J. Math. Biol., 30 (1992), 389-411.doi: 10.1007/BF00173294. |
[28] |
D. Pauly, Theory and management of tropical multispecies stocks, ICLARM Stud. Rev., 1 (1979), 35 pp. |
[29] |
D. Pauly, et al., Towards sustainability in world fisheries, Nature, 418 (2002), 689-695. |
[30] |
L. Perko, "Differential Equations and Dynamical Systems," Second edition, Texts in Applied Mathematics, 7, Springer-Verlag, New York, 1996.doi: 10.1007/978-1-4684-0249-0. |
[31] |
F. Takens, Forced oscillations and bifurcation, in "Applications of Global Analysis, I" (Sympos., Utrecht State Univ., Utrecht, 1973), Comm. Math. Inst. Rijksuniversitat Utrecht., No. 3-1974, Math. Inst. Rijksuniv. Utrecht, Utrecht, (1974), 1-59. |
[32] |
Y. Tang, D. Huang, S. Ruan and W. Zhang, Coexistence of limit cycles and homoclinic loops in a SIRS model with a nonlinear incidence rate, SIAM J. Appl. Math., 69 (2008), 621-639.doi: 10.1137/070700966. |
[33] |
D. Xiao and L. S. Jennings, Bifurcations of a ratio-dependent predator-prey with constant rate harvesting, SIAM J. Appl. Math., 65 (2005), 737-753.doi: 10.1137/S0036139903428719. |
[34] |
D. Xiao and S. Ruan, Bogdanov-Takens bifurcations in predator-prey systems with constant rate harvesting, in "Differential Equations with Applications to Biology" (Halifax, NS, 1997), Fields Inst. Commun., 21, Amer. Math. Soc., Providence, RI, (1999), 493-506. |
[35] |
P. Yodzis, Predator-prey theory and management of multispecies fisheries, Ecol. Appl., 4 (1994), 51-58.doi: 10.2307/1942114. |
[36] |
Z. Zhang, T. Ding, W. Huang and Z. Dong, "Qualitative Theory of Differential Equation," Transl. Math. Monogr., 101, Amer. Math. Soc., Providence, RI, 1992. |
[37] |
C. R. Zhu and K. Q. Lan, Phase portraits, Hopf bifurcation and limit cycles of Leslie-Gower predator-prey systems with harvesting rates, Discrete Contin. Dynam. Syst. Ser. B, 14 (2010), 289-306.doi: 10.3934/dcdsb.2010.14.289. |
[38] |
H. Zhu, S. A. Campbell and G. S. K. Wolkowicz, Bifurcation analysis of a predator-prey system with nonmonotonic functional response, SIAM J. Appl. Math., 63 (2002), 636-682.doi: 10.1137/S0036139901397285. |