January  2013, 18(1): 223-236. doi: 10.3934/dcdsb.2013.18.223

$\omega$-limit sets for porous medium equation with initial data in some weighted spaces

1. 

School of Math. Stat., Chongqing Three Gorges Univ., Wanzhou 404000, China

2. 

School of Math. Sci., South China Normal Univ., Guangzhou 510631, China, China

Received  May 2012 Revised  August 2012 Published  September 2012

We discuss the $\omega$-limit set for the Cauchy problem of the porous medium equation with initial data in some weighted spaces. Exactly, we show that there exists some relationship between the $\omega$-limit set of the rescaled initial data and the $\omega$-limit set of the spatially rescaled version of solutions. We also give some applications of such a relationship.
Citation: Liangwei Wang, Jingxue Yin, Chunhua Jin. $\omega$-limit sets for porous medium equation with initial data in some weighted spaces. Discrete and Continuous Dynamical Systems - B, 2013, 18 (1) : 223-236. doi: 10.3934/dcdsb.2013.18.223
References:
[1]

S. Kamenomostskaya, The asymptotic behaviour of the solution of the filtration equation, Israel J. Math., 14 (1973), 76-87.

[2]

Ph. Bénilan, "Opérateurs Accrétifs et Semi-Groupes dans les Espaces $L^p$ ($1\leq p \leq\infty$)," France-Japan Seminar, Tokyo, 1976.

[3]

L. Véron, Coercivité et propriétés régularisantes des semi-groupes non linéaires dans les espaces de Banach, Ann. Fac. Sci. Toulouse, 1 (1979), 171-200. doi: 10.5802/afst.535.

[4]

N. Alikakos and R. Rostamian, Large time behavior of solutions of Neumann boundary value problem for the porous medium equation, Indiana Univ. Math. J., 30 (1981), 749-785. doi: 10.1512/iumj.1981.30.30056.

[5]

S. Kamin and L. A. Peletier, Large time behaviour of solutions of the porous media equation with absorption, Israel J. Math., 55 (1986), 129-146.

[6]

F. Quirós and J. L. Vazquez, Asymptotic behaviour of the porous media equation in an exterior domain, Ann. Scuola Normale Sup. Pisa, 28 (1999), 183-227.

[7]

J. A. Carrillo and K. Fellner, Long-time asymptotics via entropy methods for diffusion dominated equations, Asymptotic Analysis, 42 (2005), 29-54.

[8]

G. Reyes and J. L. Vázquez, Long time behavior for the inhomogeneous PME in a medium with slowly decaying density, Commun. Pure Appl. Anal., 8 (2009), 493-508.

[9]

A. Friedman and S. Kamin, The asymptotic behavior of gas in an N-dimensional porous medium, Trans. Amer. Math. Soc., 262 (1980), 551-563.

[10]

S. Kamin and J. L. Vázquez, Fundamental solutions and asymptotic behaviour for the p-Laplacian equation, Rev. Mat. Iberoamericana, 4 (1988), 339-354.

[11]

J. L. Vázquez, Asymptotic behaviour for the porous medium equation posed in the whole space, J. Evol. Equ., 3 (2003), 67-118.

[12]

N. Alikakos and R. Rostamian, On the uniformization of the solutions of the porous medium equation in $\mathbbR^N$, IsraelJ. Math., 47 (1984), 270-290.

[13]

J. L. Vázquez and E. Zuazua, Complexity of large time behaviour of evolution equations with bounded data, Chin. Ann. Math. Ser. B, 23 (2002), 293-310.

[14]

T. Cazenave, F. Dickstein and F. B. Weissler, Universal solutions of the heat equation on $\mathbbR^N$, Discrete Contin. Dyn. Sys., 9 (2003), 1105-1132.

[15]

T. Cazenave, F. Dickstein and F. B. Weissler, Universal solutions of a nonlinear heat equation on $\mathbbR^N$, Ann. Scuola Norm. Sup. Pisa Cl. Sci., 5 (2003), 77-117.

[16]

T. Cazenave, F. Dickstein and F. B. Weissler, Chaotic behavior of solutions of the Navier-Stokes system in $\mathbbR^N$, Adv. Differ. Equations, 10 (2005), 361-398.

[17]

J. A. Carrillo and J. L. Vázquez, Asymptotic complexity infiltration equations, J. Evol. Equ., 7 (2007), 471-495.

[18]

T. Cazenave, F. Dickstein and F. B. Weissler, Nonparabolic asymptotic limits of solutions of the heat equation on$\mathbbR^N$, J. Dyn. Diff. Eqns., 19 (2007), 789-818.

[19]

J. X. Yin, L. W. Wang and R. Huang, Complexity of asymptotic behavior of solutions for the porous medium equations, Acta Mathematica Scientia, 30 (2010), 1865-1880.

[20]

J. X. Yin, L. W. Wang and R. Huang, Complexity of a symptotic behavior of the porous medium equation in $\mathbbR^N$, J. Evol. Equ., 11 (2011), 429-455. doi: 10.1007/s00028-010-0097-4.

[21]

E. DiBenedetto, Continuity of weak solutions to ageneral porous media equation, Indiana Univ. Math. J., 32 (1983), 83-118.

[22]

P. Bénilan, M. G. Crandall and M. Pierre, Solutions of the porousmedium in $\mathbbR^N$ under optimal conditions on the initialvalues, Indiana Univ. Math. J., 33 (1984), 51-87.

[23]

E. DiBenedetto, "Degenerate Parabolic Equations," New York, Springer-Verlag, 1993.

[24]

J. L. Vázquez, "The Porous Medium Equation: MathematicalTheory, Oxford Mathematical Monographs," Oxford/New York, TheClarendon Press/Oxford University Press, 2008.

[25]

J. L. Vázquez, "Smoothing and Decay Estimates for Nonlinear Parabolic Equations: Equations of Porous Medium Type," Oxford University Press, 2006.

[26]

L. A. Caffarelli, J. L. Vázquez and N. I. Wolanski, Lipschitz continuity of solutions and interfaces of the N-dimensional porous medium equation, Indiana Univ. Math. J., 33 (1984), 51-87.

[27]

J. N. Zhao and H. J. Yuan, Lipschitz continuity of solutions and interfaces of the evolution $p$-Laplacian equation, Northeast. Math. J., 8 (1992), 21-37.

[28]

T. Cazenave, F. Dickstein, M. Escobedo and F. B. Weissler, Self-similar solutions of a nonlinear heat equation, J. Math. Sci. Univ. Tokyo, 8 (2001), 501-540.

show all references

References:
[1]

S. Kamenomostskaya, The asymptotic behaviour of the solution of the filtration equation, Israel J. Math., 14 (1973), 76-87.

[2]

Ph. Bénilan, "Opérateurs Accrétifs et Semi-Groupes dans les Espaces $L^p$ ($1\leq p \leq\infty$)," France-Japan Seminar, Tokyo, 1976.

[3]

L. Véron, Coercivité et propriétés régularisantes des semi-groupes non linéaires dans les espaces de Banach, Ann. Fac. Sci. Toulouse, 1 (1979), 171-200. doi: 10.5802/afst.535.

[4]

N. Alikakos and R. Rostamian, Large time behavior of solutions of Neumann boundary value problem for the porous medium equation, Indiana Univ. Math. J., 30 (1981), 749-785. doi: 10.1512/iumj.1981.30.30056.

[5]

S. Kamin and L. A. Peletier, Large time behaviour of solutions of the porous media equation with absorption, Israel J. Math., 55 (1986), 129-146.

[6]

F. Quirós and J. L. Vazquez, Asymptotic behaviour of the porous media equation in an exterior domain, Ann. Scuola Normale Sup. Pisa, 28 (1999), 183-227.

[7]

J. A. Carrillo and K. Fellner, Long-time asymptotics via entropy methods for diffusion dominated equations, Asymptotic Analysis, 42 (2005), 29-54.

[8]

G. Reyes and J. L. Vázquez, Long time behavior for the inhomogeneous PME in a medium with slowly decaying density, Commun. Pure Appl. Anal., 8 (2009), 493-508.

[9]

A. Friedman and S. Kamin, The asymptotic behavior of gas in an N-dimensional porous medium, Trans. Amer. Math. Soc., 262 (1980), 551-563.

[10]

S. Kamin and J. L. Vázquez, Fundamental solutions and asymptotic behaviour for the p-Laplacian equation, Rev. Mat. Iberoamericana, 4 (1988), 339-354.

[11]

J. L. Vázquez, Asymptotic behaviour for the porous medium equation posed in the whole space, J. Evol. Equ., 3 (2003), 67-118.

[12]

N. Alikakos and R. Rostamian, On the uniformization of the solutions of the porous medium equation in $\mathbbR^N$, IsraelJ. Math., 47 (1984), 270-290.

[13]

J. L. Vázquez and E. Zuazua, Complexity of large time behaviour of evolution equations with bounded data, Chin. Ann. Math. Ser. B, 23 (2002), 293-310.

[14]

T. Cazenave, F. Dickstein and F. B. Weissler, Universal solutions of the heat equation on $\mathbbR^N$, Discrete Contin. Dyn. Sys., 9 (2003), 1105-1132.

[15]

T. Cazenave, F. Dickstein and F. B. Weissler, Universal solutions of a nonlinear heat equation on $\mathbbR^N$, Ann. Scuola Norm. Sup. Pisa Cl. Sci., 5 (2003), 77-117.

[16]

T. Cazenave, F. Dickstein and F. B. Weissler, Chaotic behavior of solutions of the Navier-Stokes system in $\mathbbR^N$, Adv. Differ. Equations, 10 (2005), 361-398.

[17]

J. A. Carrillo and J. L. Vázquez, Asymptotic complexity infiltration equations, J. Evol. Equ., 7 (2007), 471-495.

[18]

T. Cazenave, F. Dickstein and F. B. Weissler, Nonparabolic asymptotic limits of solutions of the heat equation on$\mathbbR^N$, J. Dyn. Diff. Eqns., 19 (2007), 789-818.

[19]

J. X. Yin, L. W. Wang and R. Huang, Complexity of asymptotic behavior of solutions for the porous medium equations, Acta Mathematica Scientia, 30 (2010), 1865-1880.

[20]

J. X. Yin, L. W. Wang and R. Huang, Complexity of a symptotic behavior of the porous medium equation in $\mathbbR^N$, J. Evol. Equ., 11 (2011), 429-455. doi: 10.1007/s00028-010-0097-4.

[21]

E. DiBenedetto, Continuity of weak solutions to ageneral porous media equation, Indiana Univ. Math. J., 32 (1983), 83-118.

[22]

P. Bénilan, M. G. Crandall and M. Pierre, Solutions of the porousmedium in $\mathbbR^N$ under optimal conditions on the initialvalues, Indiana Univ. Math. J., 33 (1984), 51-87.

[23]

E. DiBenedetto, "Degenerate Parabolic Equations," New York, Springer-Verlag, 1993.

[24]

J. L. Vázquez, "The Porous Medium Equation: MathematicalTheory, Oxford Mathematical Monographs," Oxford/New York, TheClarendon Press/Oxford University Press, 2008.

[25]

J. L. Vázquez, "Smoothing and Decay Estimates for Nonlinear Parabolic Equations: Equations of Porous Medium Type," Oxford University Press, 2006.

[26]

L. A. Caffarelli, J. L. Vázquez and N. I. Wolanski, Lipschitz continuity of solutions and interfaces of the N-dimensional porous medium equation, Indiana Univ. Math. J., 33 (1984), 51-87.

[27]

J. N. Zhao and H. J. Yuan, Lipschitz continuity of solutions and interfaces of the evolution $p$-Laplacian equation, Northeast. Math. J., 8 (1992), 21-37.

[28]

T. Cazenave, F. Dickstein, M. Escobedo and F. B. Weissler, Self-similar solutions of a nonlinear heat equation, J. Math. Sci. Univ. Tokyo, 8 (2001), 501-540.

[1]

Guillermo Reyes, Juan-Luis Vázquez. The Cauchy problem for the inhomogeneous porous medium equation. Networks and Heterogeneous Media, 2006, 1 (2) : 337-351. doi: 10.3934/nhm.2006.1.337

[2]

Luis Caffarelli, Juan-Luis Vázquez. Asymptotic behaviour of a porous medium equation with fractional diffusion. Discrete and Continuous Dynamical Systems, 2011, 29 (4) : 1393-1404. doi: 10.3934/dcds.2011.29.1393

[3]

Changjing Zhuge, Xiaojuan Sun, Jinzhi Lei. On positive solutions and the Omega limit set for a class of delay differential equations. Discrete and Continuous Dynamical Systems - B, 2013, 18 (9) : 2487-2503. doi: 10.3934/dcdsb.2013.18.2487

[4]

Ansgar Jüngel, Ingrid Violet. Mixed entropy estimates for the porous-medium equation with convection. Discrete and Continuous Dynamical Systems - B, 2009, 12 (4) : 783-796. doi: 10.3934/dcdsb.2009.12.783

[5]

Jing Li, Yifu Wang, Jingxue Yin. Non-sharp travelling waves for a dual porous medium equation. Communications on Pure and Applied Analysis, 2016, 15 (2) : 623-636. doi: 10.3934/cpaa.2016.15.623

[6]

Xinfu Chen, Jong-Shenq Guo, Bei Hu. Dead-core rates for the porous medium equation with a strong absorption. Discrete and Continuous Dynamical Systems - B, 2012, 17 (6) : 1761-1774. doi: 10.3934/dcdsb.2012.17.1761

[7]

Sofía Nieto, Guillermo Reyes. Asymptotic behavior of the solutions of the inhomogeneous Porous Medium Equation with critical vanishing density. Communications on Pure and Applied Analysis, 2013, 12 (2) : 1123-1139. doi: 10.3934/cpaa.2013.12.1123

[8]

Gabriele Grillo, Matteo Muratori, Fabio Punzo. On the asymptotic behaviour of solutions to the fractional porous medium equation with variable density. Discrete and Continuous Dynamical Systems, 2015, 35 (12) : 5927-5962. doi: 10.3934/dcds.2015.35.5927

[9]

Lili Du, Zheng-An Yao. Localization of blow-up points for a nonlinear nonlocal porous medium equation. Communications on Pure and Applied Analysis, 2007, 6 (1) : 183-190. doi: 10.3934/cpaa.2007.6.183

[10]

Zhilei Liang. On the critical exponents for porous medium equation with a localized reaction in high dimensions. Communications on Pure and Applied Analysis, 2012, 11 (2) : 649-658. doi: 10.3934/cpaa.2012.11.649

[11]

Edoardo Mainini. On the signed porous medium flow. Networks and Heterogeneous Media, 2012, 7 (3) : 525-541. doi: 10.3934/nhm.2012.7.525

[12]

Qianqian Han, Bo Deng, Xiao-Song Yang. The existence of $ \omega $-limit set for a modified Nosé-Hoover oscillator. Discrete and Continuous Dynamical Systems - B, 2022  doi: 10.3934/dcdsb.2022043

[13]

Danielle Hilhorst, Hideki Murakawa. Singular limit analysis of a reaction-diffusion system with precipitation and dissolution in a porous medium. Networks and Heterogeneous Media, 2014, 9 (4) : 669-682. doi: 10.3934/nhm.2014.9.669

[14]

Marie Henry, Danielle Hilhorst, Robert Eymard. Singular limit of a two-phase flow problem in porous medium as the air viscosity tends to zero. Discrete and Continuous Dynamical Systems - S, 2012, 5 (1) : 93-113. doi: 10.3934/dcdss.2012.5.93

[15]

Vianney Perchet, Marc Quincampoix. A differential game on Wasserstein space. Application to weak approachability with partial monitoring. Journal of Dynamics and Games, 2019, 6 (1) : 65-85. doi: 10.3934/jdg.2019005

[16]

Ansgar Jüngel, Stefan Schuchnigg. A discrete Bakry-Emery method and its application to the porous-medium equation. Discrete and Continuous Dynamical Systems, 2017, 37 (11) : 5541-5560. doi: 10.3934/dcds.2017241

[17]

Boris Haspot, Ewelina Zatorska. From the highly compressible Navier-Stokes equations to the porous medium equation -- rate of convergence. Discrete and Continuous Dynamical Systems, 2016, 36 (6) : 3107-3123. doi: 10.3934/dcds.2016.36.3107

[18]

Kaouther Ammar, Philippe Souplet. Liouville-type theorems and universal bounds for nonnegative solutions of the porous medium equation with source. Discrete and Continuous Dynamical Systems, 2010, 26 (2) : 665-689. doi: 10.3934/dcds.2010.26.665

[19]

Jean-Daniel Djida, Juan J. Nieto, Iván Area. Nonlocal time-porous medium equation: Weak solutions and finite speed of propagation. Discrete and Continuous Dynamical Systems - B, 2019, 24 (8) : 4031-4053. doi: 10.3934/dcdsb.2019049

[20]

Guofu Lu. Nonexistence and short time asymptotic behavior of source-type solution for porous medium equation with convection in one-dimension. Discrete and Continuous Dynamical Systems - B, 2016, 21 (5) : 1567-1586. doi: 10.3934/dcdsb.2016011

2020 Impact Factor: 1.327

Metrics

  • PDF downloads (61)
  • HTML views (0)
  • Cited by (8)

Other articles
by authors

[Back to Top]