November  2013, 18(9): 2283-2313. doi: 10.3934/dcdsb.2013.18.2283

Dynamics of a ratio-dependent predator-prey system with a strong Allee effect

1. 

School of Mathematics and Statistics, Lanzhou University, Lanzhou 730000, China

2. 

Department of Mathematics, University of Louisville, Louisville, KY 40292

Received  September 2012 Revised  May 2013 Published  September 2013

A ratio-dependent predator-prey model with a strong Allee effect in prey is studied. We show that the model has a Bogdanov-Takens bifurcation that is associated with a catastrophic crash of the predator population. Our analysis indicates that an unstable limit cycle bifurcates from a Hopf bifurcation, and it disappears due to a homoclinic bifurcation which can lead to different patterns of global population dynamics in the model. We study the heteroclinic orbits and determine all possible phase portraits when the Bogdanov-Takens bifurcation occurs. We also provide the conditions for nonexistence of limit cycle under which the global dynamics of the model can be determined.
Citation: Yujing Gao, Bingtuan Li. Dynamics of a ratio-dependent predator-prey system with a strong Allee effect. Discrete and Continuous Dynamical Systems - B, 2013, 18 (9) : 2283-2313. doi: 10.3934/dcdsb.2013.18.2283
References:
[1]

H. R. Akcakaya, Population cycles of mammals, evidence for a ratio-dependent predation hypothesis, Ecological Monographs, 62 (1992), 119-142. doi: 10.2307/2937172.

[2]

H. R. Akcakaya, R. Arditi and L. R. Ginzburg, Ratio-dependent predation: An abstraction that works, Ecology, 76 (1995), 995-1004. doi: 10.2307/1939362.

[3]

W. C. Allee, A. E. Emerson, O. Park, T. Park and K. P. Schmidt, "Principles of Animal Ecology" W. B. Saunders, Philadelphia, Pennsylvania, USA 1949.

[4]

R. Arditi and A. A. Berryman, The biological control paradox, Trends in Ecology and Evolution, 6 (1991), 32. doi: 10.1016/0169-5347(91)90148-Q.

[5]

R. Arditi and L. R. Ginzburg, Coupling in Predator-prey dynamics: ratio-dependence, Journal of Theoretical Biology, 139 (1989), 311-326. doi: 10.1016/S0022-5193(89)80211-5.

[6]

R. Arditi, L. R. Ginzburg and H. R. Akcakaya, Variation in plankton densities among lakes: A case for ratio-dependent predation models, American Naturalist, 138 (1991), 1287-1296. doi: 10.1086/285286.

[7]

R. Arditi and L. R. Ginzburg, "How Species Interact Altering the Standard View on Trophic Ecology," Oxford University Press, Oxford, UK 2012.

[8]

R. Arditi and H. Saiah, Empirical evidence of the role of heterogeneity in ratio-dependent consumption, Ecology, 73 (1992), 1544-1551.

[9]

O. Arino, A. El abdllaoui, J. Mikram and J. Chattopadhyay, Infection in prey population may act as a biological control in ratio-dependent predator-prey models, Nonlinearity, 17 (2004), 1101-1116. doi: 10.1088/0951-7715/17/3/018.

[10]

M. Bandyopadhyay and J. Chattopadhyay, Ratio-dependent predator-prey model: Effect of environmental fluctuation and stability , Nonlinearity, 18 (2005), 913-936 doi: 10.1088/0951-7715/18/2/022.

[11]

M. Banerjee and S. Petrovskii, Self-organised spatial patterns and chaos in a ratio-dependent predator-prey system, Theoretical Ecology, 4 (2011), 37-53. doi: 10.1007/s12080-010-0073-1.

[12]

A. D. Bazykin, "Nonlinear Dynamics of Interacting Populations," World Scientific Series on nonlinear science, Series A: monographs and treatises, 11, World Scientific Publishing Co., Inc., River Edge, 1989. doi: 10.1142/9789812798725.

[13]

L. Berec, D. S. Boukal and M .Berec, Linking the Allee effect, sexual reproduction, and temperaturedependent sex determination via spatial dynamics, American Naturalist, 157(2001), 217-230.

[14]

F. Berezovskaya, G. Karev and R. Arditi, Parametric analysis of the ratio-dependent predator-prey model, Journal of Mathematical Biology, 43 (2001), 221-246. doi: 10.1007/s002850000078.

[15]

A. A. Berryman, The origins and evolution of predator-prey theory, Ecology,73 (1992), 1530-1535.

[16]

R. Bogdanov, Bifurcations of a limit cycle for a family of vector fields, on the plane, Selecta Math Sov., 1 (1981), 373-388.

[17]

R. Bogdanov, Versal deformations of a singular point on the plane in the case of zero eigenvalues, Functional Analysis and Its Applications, 9 (1975), 144-145. doi: 10.1007/BF01075453.

[18]

D. S. Boukal, M. W. Sabelis and L. Berec, How predator functional responses and Allee effects in prey affect the paradox of enrichment and population collapses, Theoretical Population Biology, 72 (2007), 136-147. doi: 10.1016/j.tpb.2006.12.003.

[19]

J. Charles, Studies on the Biologies of Two Mite Species, Predator and Prey, Including Some Effects of Gamma Radiation on Selected DevelopmentalStages, Ecology, 40 (1959), 572-579.

[20]

S. Chow, C. Li and D. Wang, "Normal Forms and Bifurcation of Planar Vector Fields," Combridge University Press, New York, 1994. doi: 10.1017/CBO9780511665639.

[21]

E. D. Conway and J. A. Smoller, Global analysis of a system of predator-prey equations, SIAM Journal on Applied Mathematics, 46 (1986), 630-642. doi: 10.1137/0146043.

[22]

F. Courchamp, L. Berec and J. Gascoigne, "Allee Effects in Ecology and Conservation," Oxford University Press, Oxford, UK 2008.

[23]

F.Courchamp, T. Clutton-Brock and B. Grenfell, Inverse density dependence and the Allee effect, Trends in Ecology and Evolution, 14 (1999), 405-410.

[24]

D. L. DeAngelis, R. A. Goldstein and R. V. O'Neill, A model for trophic interactions, Ecology, 56 (1975), 881-892. doi: 10.2307/1936298.

[25]

D. L. DeAngelis and J. N. Holland, Emergence of ratio-dependent and predator-dependent functional responses for pollination mutualism and seed parasitism, Ecological Modelling, 191 (2006), 551-556. doi: 10.1016/j.ecolmodel.2005.06.005.

[26]

B. Dennis, Allee effects: population growth, critical density, and the chance of extinction, Natural Resource Modeling, 3 (1989), 481-538.

[27]

H. I. Freedman, "Deterministic Mathematical Models in Population Ecology," Marcel Dekker, New York, 1980.

[28]

W. M. Getz, Population dynamics: A per capita resource approach, Journal of Theoretical Biology, 108 (1984), 623-643. doi: 10.1016/S0022-5193(84)80082-X.

[29]

L. R. Ginzburg and H. R. Akcakaya, Consequences of ratio-dependent predation for steady state properties of ecosystems, Ecology, 73 (1992), 1536-1543. doi: 10.2307/1940006.

[30]

J. Guckenheimer and P. Holmes, "Nonlinear Oscillations, Dynamical Systems and Bifurcations of Vector Fields," Springer-Verlag, New York, 1983.

[31]

A. P. Gutierrez, The physiological basis of ratio-dependent predator-prey theory: a metabolic pool model of Nicholson's blowflies as an example, Ecology, 73 (1992), 1552-1563.

[32]

J. K. Hale, "Ordinary Differential Equations," Krieger Publishing Co. Malabar, 1980.

[33]

M. Haque, Ratio-dependent predator-prey models of interacting populations, Bulletin of Mathematical Biology, 71 (2009), 430-452. doi: 10.1007/s11538-008-9368-4.

[34]

F. M. Hilker, M. Langlais and H. Malchow, The Allee effect and infectious diseases: extinction, multistability, and the (dis-)appearance of oscillations, American Naturalist, 173 (2009), 72-88. doi: 10.1086/593357.

[35]

F. M. Hilker, Population collapse to extinction: The catastrophic combination of parasitism and Allee effect, Journal of Biological Dynamics, 4 (2010), 86-101. doi: 10.1080/17513750903026429.

[36]

S. B. Hsu, T. W. Hwang and Y. Kuang, Global analysis of the Michaelis-Menten-type ratio-dependent predator-prey system, Journal of Mathematical Biology, 42 (2001), 489-506. doi: 10.1007/s002850100079.

[37]

S. B. Hsu and J. Shi, Relaxation oscillation profile of limit cycle in predator-prey system, Discrete and Continuous Dynamical Systems - Series B, 11 (2009), 893-911. doi: 10.3934/dcdsb.2009.11.893.

[38]

C. B. Huffaker, Experimental studies on predation: dispersion factors and predator-prey oscillations, Hilgardia, 27 (1958), 343-383.

[39]

M. Kot, "Elements of Mathematical Ecology," Combridge University Press, Cambridge, 2001. doi: 10.1017/CBO9780511608520.

[40]

Y. Kuang and E. Beretta, Global qualitative analysis of a ratio-dependent predator-prey system, Journal of Mathematical Biology, 36 (1998), 389-406. doi: 10.1007/s002850050105.

[41]

Y. A. Kuznetsov, "Elements of Applied Bifurcation Theory," Applied Mathematical Sciences 112, Springer Verlag, New York 1995.

[42]

R. Lande, Demographic stochasticity and Allee effect on a scale with isotrophic noise, Oikos, 83 (1998), 353-358.

[43]

B. Li and Y. Kuang, Heteroclinic bifercation in the Michaelis-Menten-type ratio-dependent predator-prey system, SIAM Journal on Applied Mathematics, 67 (2007), 1453-1464. doi: 10.1137/060662460.

[44]

R. Liu, Z. Feng, H. Zhu and D. L. DeAngelis, Bifurcation analysis of a plant-herbivore model with toxin-determined functional response, Journal of Differential Equations, 245 (2008), 442-467. doi: 10.1016/j.jde.2007.10.034.

[45]

H. Malchow, S. V. Petrovskii and E. Venturino, "Spatiotemporal Patterns in Ecology and Epidemiology, Theory, Models, and Simulation," Chapman & Hall/CRC Mathematical and Computational Biology Series, Chapman & Hall, Boca Raton, 2008.

[46]

R. M. May, "Stability and Complexity in Model Ecosystems," Princeton Univ.Press, 1974.

[47]

P. Matson and A. Berryman, Special Feature: Ratio-dependent predator-prey theory, Ecology, 73 (1992), 1592. doi: 10.2307/1940004.

[48]

M. A. McCarthy, The Allee effect, finding mates and theoretical models, Ecological Modelling, 103 (1997), 99-102. doi: 10.1016/S0304-3800(97)00104-X.

[49]

S. V. Petrovskii, A. Y. Morozov and E. Venturino, Allee effect makes possible patchy invasion in a predator-prey system, Ecology Letters, 5 (2002), 345-352. doi: 10.1046/j.1461-0248.2002.00324.x.

[50]

M. L. Rosenzweig, Paradox of enrichment: Destabilization of exploitation systems in ecological time, Science, 171 (1969), 385-387.

[51]

S. Ruan, Y. Tang and W. Zhang, Computing the heteroclinic bifurcation curves in predator-prey systems with ratio-dependent functional response, Journal of Mathematical Biology, 57 (2008), 223-241. doi: 10.1007/s00285-007-0153-z.

[52]

L. B. Slobodkin, A summary of the special feature and comments on its theoretical context and importance, Ecology, 73 (1992), 1564-1566. doi: 10.2307/1940009.

[53]

P. A. Stephens and W. J. Sutherland, Consequences of the Allee effect for behavior, ecology and conservation, Trends in Ecology and Evolution, 14 (1999), 401-405. doi: 10.1016/S0169-5347(99)01684-5.

[54]

Y. Tang and W. Zhang, Heteroclinic bifurcation in a ratio-dependent predator-prey system, Journal of Mathematical Biology, 50 (2005), 699-712. doi: 10.1007/s00285-004-0307-1.

[55]

H. R. Thieme, T. Dhirasakdanon, Z. Han and R. Trevino, Species decline and extinction: synergy of infectious disease and Allee effect?, Journal of Biological Dynamics, 3 (2009), 305-323. doi: 10.1080/17513750802376313.

[56]

George A. K. van Voorn, L. Hemerik, M. P. Boer and B. M. Kooi, Heteroclinic orbits indicate overexploitation in predator prey systems with a strong Allee effect, Mathematical Biosciences, 209 (2007), 451-469. doi: 10.1016/j.mbs.2007.02.006.

[57]

P. J. Wangersky and W. J. Cunningham, Time lag in prey-predator population models, Ecology, 38 (1957), 136-139. doi: 10.2307/1932137.

[58]

W. Wang, Y. Lin, F. Rao, L. Zhang and Y. Tan, Pattern selection in a ratio-dependent predator-prey model, Journal of Statistical Mechanics: Theory and Experiment, 11 (2010), 11036. doi: 10.1088/1742-5468/2010/11/P11036.

[59]

J. Wang, J. Shi and J. Wei, Predator-prey system with strong Allee effect in prey, Journal of Mathematical Biology, 62 (2011), 291-331. doi: 10.1007/s00285-010-0332-1.

[60]

D. Xiao and S. Ruan, Global dynamics of a ratio-dependent predator-prey system, Journal of Mathematical Biology, 43 (2001), 268-290. doi: 10.1007/s002850100097.

[61]

Z. Zhang, T. Ding, W. Huang and Z. Dong, "Qualitative Theory of Differential Equations," Translations of Mathematical Monographs 101, American Mathematical Society, Providence 1992.

[62]

H. Zhu, S. A. Campbell and G. S. K. Wolkowicz, Bifurcation analysis of a predator-prey system with nonmonotonic function response, SIAM Journal on Applied Mathematics, 63 (2002), 636-682. doi: 10.1137/S0036139901397285.

show all references

References:
[1]

H. R. Akcakaya, Population cycles of mammals, evidence for a ratio-dependent predation hypothesis, Ecological Monographs, 62 (1992), 119-142. doi: 10.2307/2937172.

[2]

H. R. Akcakaya, R. Arditi and L. R. Ginzburg, Ratio-dependent predation: An abstraction that works, Ecology, 76 (1995), 995-1004. doi: 10.2307/1939362.

[3]

W. C. Allee, A. E. Emerson, O. Park, T. Park and K. P. Schmidt, "Principles of Animal Ecology" W. B. Saunders, Philadelphia, Pennsylvania, USA 1949.

[4]

R. Arditi and A. A. Berryman, The biological control paradox, Trends in Ecology and Evolution, 6 (1991), 32. doi: 10.1016/0169-5347(91)90148-Q.

[5]

R. Arditi and L. R. Ginzburg, Coupling in Predator-prey dynamics: ratio-dependence, Journal of Theoretical Biology, 139 (1989), 311-326. doi: 10.1016/S0022-5193(89)80211-5.

[6]

R. Arditi, L. R. Ginzburg and H. R. Akcakaya, Variation in plankton densities among lakes: A case for ratio-dependent predation models, American Naturalist, 138 (1991), 1287-1296. doi: 10.1086/285286.

[7]

R. Arditi and L. R. Ginzburg, "How Species Interact Altering the Standard View on Trophic Ecology," Oxford University Press, Oxford, UK 2012.

[8]

R. Arditi and H. Saiah, Empirical evidence of the role of heterogeneity in ratio-dependent consumption, Ecology, 73 (1992), 1544-1551.

[9]

O. Arino, A. El abdllaoui, J. Mikram and J. Chattopadhyay, Infection in prey population may act as a biological control in ratio-dependent predator-prey models, Nonlinearity, 17 (2004), 1101-1116. doi: 10.1088/0951-7715/17/3/018.

[10]

M. Bandyopadhyay and J. Chattopadhyay, Ratio-dependent predator-prey model: Effect of environmental fluctuation and stability , Nonlinearity, 18 (2005), 913-936 doi: 10.1088/0951-7715/18/2/022.

[11]

M. Banerjee and S. Petrovskii, Self-organised spatial patterns and chaos in a ratio-dependent predator-prey system, Theoretical Ecology, 4 (2011), 37-53. doi: 10.1007/s12080-010-0073-1.

[12]

A. D. Bazykin, "Nonlinear Dynamics of Interacting Populations," World Scientific Series on nonlinear science, Series A: monographs and treatises, 11, World Scientific Publishing Co., Inc., River Edge, 1989. doi: 10.1142/9789812798725.

[13]

L. Berec, D. S. Boukal and M .Berec, Linking the Allee effect, sexual reproduction, and temperaturedependent sex determination via spatial dynamics, American Naturalist, 157(2001), 217-230.

[14]

F. Berezovskaya, G. Karev and R. Arditi, Parametric analysis of the ratio-dependent predator-prey model, Journal of Mathematical Biology, 43 (2001), 221-246. doi: 10.1007/s002850000078.

[15]

A. A. Berryman, The origins and evolution of predator-prey theory, Ecology,73 (1992), 1530-1535.

[16]

R. Bogdanov, Bifurcations of a limit cycle for a family of vector fields, on the plane, Selecta Math Sov., 1 (1981), 373-388.

[17]

R. Bogdanov, Versal deformations of a singular point on the plane in the case of zero eigenvalues, Functional Analysis and Its Applications, 9 (1975), 144-145. doi: 10.1007/BF01075453.

[18]

D. S. Boukal, M. W. Sabelis and L. Berec, How predator functional responses and Allee effects in prey affect the paradox of enrichment and population collapses, Theoretical Population Biology, 72 (2007), 136-147. doi: 10.1016/j.tpb.2006.12.003.

[19]

J. Charles, Studies on the Biologies of Two Mite Species, Predator and Prey, Including Some Effects of Gamma Radiation on Selected DevelopmentalStages, Ecology, 40 (1959), 572-579.

[20]

S. Chow, C. Li and D. Wang, "Normal Forms and Bifurcation of Planar Vector Fields," Combridge University Press, New York, 1994. doi: 10.1017/CBO9780511665639.

[21]

E. D. Conway and J. A. Smoller, Global analysis of a system of predator-prey equations, SIAM Journal on Applied Mathematics, 46 (1986), 630-642. doi: 10.1137/0146043.

[22]

F. Courchamp, L. Berec and J. Gascoigne, "Allee Effects in Ecology and Conservation," Oxford University Press, Oxford, UK 2008.

[23]

F.Courchamp, T. Clutton-Brock and B. Grenfell, Inverse density dependence and the Allee effect, Trends in Ecology and Evolution, 14 (1999), 405-410.

[24]

D. L. DeAngelis, R. A. Goldstein and R. V. O'Neill, A model for trophic interactions, Ecology, 56 (1975), 881-892. doi: 10.2307/1936298.

[25]

D. L. DeAngelis and J. N. Holland, Emergence of ratio-dependent and predator-dependent functional responses for pollination mutualism and seed parasitism, Ecological Modelling, 191 (2006), 551-556. doi: 10.1016/j.ecolmodel.2005.06.005.

[26]

B. Dennis, Allee effects: population growth, critical density, and the chance of extinction, Natural Resource Modeling, 3 (1989), 481-538.

[27]

H. I. Freedman, "Deterministic Mathematical Models in Population Ecology," Marcel Dekker, New York, 1980.

[28]

W. M. Getz, Population dynamics: A per capita resource approach, Journal of Theoretical Biology, 108 (1984), 623-643. doi: 10.1016/S0022-5193(84)80082-X.

[29]

L. R. Ginzburg and H. R. Akcakaya, Consequences of ratio-dependent predation for steady state properties of ecosystems, Ecology, 73 (1992), 1536-1543. doi: 10.2307/1940006.

[30]

J. Guckenheimer and P. Holmes, "Nonlinear Oscillations, Dynamical Systems and Bifurcations of Vector Fields," Springer-Verlag, New York, 1983.

[31]

A. P. Gutierrez, The physiological basis of ratio-dependent predator-prey theory: a metabolic pool model of Nicholson's blowflies as an example, Ecology, 73 (1992), 1552-1563.

[32]

J. K. Hale, "Ordinary Differential Equations," Krieger Publishing Co. Malabar, 1980.

[33]

M. Haque, Ratio-dependent predator-prey models of interacting populations, Bulletin of Mathematical Biology, 71 (2009), 430-452. doi: 10.1007/s11538-008-9368-4.

[34]

F. M. Hilker, M. Langlais and H. Malchow, The Allee effect and infectious diseases: extinction, multistability, and the (dis-)appearance of oscillations, American Naturalist, 173 (2009), 72-88. doi: 10.1086/593357.

[35]

F. M. Hilker, Population collapse to extinction: The catastrophic combination of parasitism and Allee effect, Journal of Biological Dynamics, 4 (2010), 86-101. doi: 10.1080/17513750903026429.

[36]

S. B. Hsu, T. W. Hwang and Y. Kuang, Global analysis of the Michaelis-Menten-type ratio-dependent predator-prey system, Journal of Mathematical Biology, 42 (2001), 489-506. doi: 10.1007/s002850100079.

[37]

S. B. Hsu and J. Shi, Relaxation oscillation profile of limit cycle in predator-prey system, Discrete and Continuous Dynamical Systems - Series B, 11 (2009), 893-911. doi: 10.3934/dcdsb.2009.11.893.

[38]

C. B. Huffaker, Experimental studies on predation: dispersion factors and predator-prey oscillations, Hilgardia, 27 (1958), 343-383.

[39]

M. Kot, "Elements of Mathematical Ecology," Combridge University Press, Cambridge, 2001. doi: 10.1017/CBO9780511608520.

[40]

Y. Kuang and E. Beretta, Global qualitative analysis of a ratio-dependent predator-prey system, Journal of Mathematical Biology, 36 (1998), 389-406. doi: 10.1007/s002850050105.

[41]

Y. A. Kuznetsov, "Elements of Applied Bifurcation Theory," Applied Mathematical Sciences 112, Springer Verlag, New York 1995.

[42]

R. Lande, Demographic stochasticity and Allee effect on a scale with isotrophic noise, Oikos, 83 (1998), 353-358.

[43]

B. Li and Y. Kuang, Heteroclinic bifercation in the Michaelis-Menten-type ratio-dependent predator-prey system, SIAM Journal on Applied Mathematics, 67 (2007), 1453-1464. doi: 10.1137/060662460.

[44]

R. Liu, Z. Feng, H. Zhu and D. L. DeAngelis, Bifurcation analysis of a plant-herbivore model with toxin-determined functional response, Journal of Differential Equations, 245 (2008), 442-467. doi: 10.1016/j.jde.2007.10.034.

[45]

H. Malchow, S. V. Petrovskii and E. Venturino, "Spatiotemporal Patterns in Ecology and Epidemiology, Theory, Models, and Simulation," Chapman & Hall/CRC Mathematical and Computational Biology Series, Chapman & Hall, Boca Raton, 2008.

[46]

R. M. May, "Stability and Complexity in Model Ecosystems," Princeton Univ.Press, 1974.

[47]

P. Matson and A. Berryman, Special Feature: Ratio-dependent predator-prey theory, Ecology, 73 (1992), 1592. doi: 10.2307/1940004.

[48]

M. A. McCarthy, The Allee effect, finding mates and theoretical models, Ecological Modelling, 103 (1997), 99-102. doi: 10.1016/S0304-3800(97)00104-X.

[49]

S. V. Petrovskii, A. Y. Morozov and E. Venturino, Allee effect makes possible patchy invasion in a predator-prey system, Ecology Letters, 5 (2002), 345-352. doi: 10.1046/j.1461-0248.2002.00324.x.

[50]

M. L. Rosenzweig, Paradox of enrichment: Destabilization of exploitation systems in ecological time, Science, 171 (1969), 385-387.

[51]

S. Ruan, Y. Tang and W. Zhang, Computing the heteroclinic bifurcation curves in predator-prey systems with ratio-dependent functional response, Journal of Mathematical Biology, 57 (2008), 223-241. doi: 10.1007/s00285-007-0153-z.

[52]

L. B. Slobodkin, A summary of the special feature and comments on its theoretical context and importance, Ecology, 73 (1992), 1564-1566. doi: 10.2307/1940009.

[53]

P. A. Stephens and W. J. Sutherland, Consequences of the Allee effect for behavior, ecology and conservation, Trends in Ecology and Evolution, 14 (1999), 401-405. doi: 10.1016/S0169-5347(99)01684-5.

[54]

Y. Tang and W. Zhang, Heteroclinic bifurcation in a ratio-dependent predator-prey system, Journal of Mathematical Biology, 50 (2005), 699-712. doi: 10.1007/s00285-004-0307-1.

[55]

H. R. Thieme, T. Dhirasakdanon, Z. Han and R. Trevino, Species decline and extinction: synergy of infectious disease and Allee effect?, Journal of Biological Dynamics, 3 (2009), 305-323. doi: 10.1080/17513750802376313.

[56]

George A. K. van Voorn, L. Hemerik, M. P. Boer and B. M. Kooi, Heteroclinic orbits indicate overexploitation in predator prey systems with a strong Allee effect, Mathematical Biosciences, 209 (2007), 451-469. doi: 10.1016/j.mbs.2007.02.006.

[57]

P. J. Wangersky and W. J. Cunningham, Time lag in prey-predator population models, Ecology, 38 (1957), 136-139. doi: 10.2307/1932137.

[58]

W. Wang, Y. Lin, F. Rao, L. Zhang and Y. Tan, Pattern selection in a ratio-dependent predator-prey model, Journal of Statistical Mechanics: Theory and Experiment, 11 (2010), 11036. doi: 10.1088/1742-5468/2010/11/P11036.

[59]

J. Wang, J. Shi and J. Wei, Predator-prey system with strong Allee effect in prey, Journal of Mathematical Biology, 62 (2011), 291-331. doi: 10.1007/s00285-010-0332-1.

[60]

D. Xiao and S. Ruan, Global dynamics of a ratio-dependent predator-prey system, Journal of Mathematical Biology, 43 (2001), 268-290. doi: 10.1007/s002850100097.

[61]

Z. Zhang, T. Ding, W. Huang and Z. Dong, "Qualitative Theory of Differential Equations," Translations of Mathematical Monographs 101, American Mathematical Society, Providence 1992.

[62]

H. Zhu, S. A. Campbell and G. S. K. Wolkowicz, Bifurcation analysis of a predator-prey system with nonmonotonic function response, SIAM Journal on Applied Mathematics, 63 (2002), 636-682. doi: 10.1137/S0036139901397285.

[1]

Bing Zeng, Shengfu Deng, Pei Yu. Bogdanov-Takens bifurcation in predator-prey systems. Discrete and Continuous Dynamical Systems - S, 2020, 13 (11) : 3253-3269. doi: 10.3934/dcdss.2020130

[2]

Tongtong Chen, Jixun Chu. Hopf bifurcation for a predator-prey model with age structure and ratio-dependent response function incorporating a prey refuge. Discrete and Continuous Dynamical Systems - B, 2022  doi: 10.3934/dcdsb.2022082

[3]

Jicai Huang, Sanhong Liu, Shigui Ruan, Xinan Zhang. Bogdanov-Takens bifurcation of codimension 3 in a predator-prey model with constant-yield predator harvesting. Communications on Pure and Applied Analysis, 2016, 15 (3) : 1041-1055. doi: 10.3934/cpaa.2016.15.1041

[4]

Xinyu Song, Liming Cai, U. Neumann. Ratio-dependent predator-prey system with stage structure for prey. Discrete and Continuous Dynamical Systems - B, 2004, 4 (3) : 747-758. doi: 10.3934/dcdsb.2004.4.747

[5]

Qizhen Xiao, Binxiang Dai. Heteroclinic bifurcation for a general predator-prey model with Allee effect and state feedback impulsive control strategy. Mathematical Biosciences & Engineering, 2015, 12 (5) : 1065-1081. doi: 10.3934/mbe.2015.12.1065

[6]

Zuolin Shen, Junjie Wei. Hopf bifurcation analysis in a diffusive predator-prey system with delay and surplus killing effect. Mathematical Biosciences & Engineering, 2018, 15 (3) : 693-715. doi: 10.3934/mbe.2018031

[7]

Inkyung Ahn, Wonlyul Ko, Kimun Ryu. Asymptotic behavior of a ratio-dependent predator-prey system with disease in the prey. Conference Publications, 2013, 2013 (special) : 11-19. doi: 10.3934/proc.2013.2013.11

[8]

Qian Cao, Yongli Cai, Yong Luo. Nonconstant positive solutions to the ratio-dependent predator-prey system with prey-taxis in one dimension. Discrete and Continuous Dynamical Systems - B, 2022, 27 (3) : 1397-1420. doi: 10.3934/dcdsb.2021095

[9]

Xin Jiang, Zhikun She, Shigui Ruan. Global dynamics of a predator-prey system with density-dependent mortality and ratio-dependent functional response. Discrete and Continuous Dynamical Systems - B, 2021, 26 (4) : 1967-1990. doi: 10.3934/dcdsb.2020041

[10]

Benjamin Leard, Catherine Lewis, Jorge Rebaza. Dynamics of ratio-dependent Predator-Prey models with nonconstant harvesting. Discrete and Continuous Dynamical Systems - S, 2008, 1 (2) : 303-315. doi: 10.3934/dcdss.2008.1.303

[11]

Xiaoling Zou, Dejun Fan, Ke Wang. Stationary distribution and stochastic Hopf bifurcation for a predator-prey system with noises. Discrete and Continuous Dynamical Systems - B, 2013, 18 (5) : 1507-1519. doi: 10.3934/dcdsb.2013.18.1507

[12]

Zhicheng Wang, Jun Wu. Existence of positive periodic solutions for delayed ratio-dependent predator-prey system with stocking. Communications on Pure and Applied Analysis, 2006, 5 (3) : 423-433. doi: 10.3934/cpaa.2006.5.423

[13]

Na Min, Mingxin Wang. Hopf bifurcation and steady-state bifurcation for a Leslie-Gower prey-predator model with strong Allee effect in prey. Discrete and Continuous Dynamical Systems, 2019, 39 (2) : 1071-1099. doi: 10.3934/dcds.2019045

[14]

Xiaoyuan Chang, Junjie Wei. Stability and Hopf bifurcation in a diffusive predator-prey system incorporating a prey refuge. Mathematical Biosciences & Engineering, 2013, 10 (4) : 979-996. doi: 10.3934/mbe.2013.10.979

[15]

Hongyong Zhao, Daiyong Wu. Point to point traveling wave and periodic traveling wave induced by Hopf bifurcation for a diffusive predator-prey system. Discrete and Continuous Dynamical Systems - S, 2020, 13 (11) : 3271-3284. doi: 10.3934/dcdss.2020129

[16]

Canan Çelik. Dynamical behavior of a ratio dependent predator-prey system with distributed delay. Discrete and Continuous Dynamical Systems - B, 2011, 16 (3) : 719-738. doi: 10.3934/dcdsb.2011.16.719

[17]

Marcos Lizana, Julio Marín. On the dynamics of a ratio dependent Predator-Prey system with diffusion and delay. Discrete and Continuous Dynamical Systems - B, 2006, 6 (6) : 1321-1338. doi: 10.3934/dcdsb.2006.6.1321

[18]

Sze-Bi Hsu, Junping Shi. Relaxation oscillation profile of limit cycle in predator-prey system. Discrete and Continuous Dynamical Systems - B, 2009, 11 (4) : 893-911. doi: 10.3934/dcdsb.2009.11.893

[19]

Xun Cao, Xianyong Chen, Weihua Jiang. Bogdanov-Takens bifurcation with $ Z_2 $ symmetry and spatiotemporal dynamics in diffusive Rosenzweig-MacArthur model involving nonlocal prey competition. Discrete and Continuous Dynamical Systems, 2022, 42 (8) : 3747-3785. doi: 10.3934/dcds.2022031

[20]

Min Lu, Chuang Xiang, Jicai Huang. Bogdanov-Takens bifurcation in a SIRS epidemic model with a generalized nonmonotone incidence rate. Discrete and Continuous Dynamical Systems - S, 2020, 13 (11) : 3125-3138. doi: 10.3934/dcdss.2020115

2021 Impact Factor: 1.497

Metrics

  • PDF downloads (183)
  • HTML views (0)
  • Cited by (8)

Other articles
by authors

[Back to Top]