\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Blow-up results for semilinear wave equations in the superconformal case

Abstract Related Papers Cited by
  • We consider the semilinear wave equation in higher dimensions with power nonlinearity in the superconformal range, and its perturbations with lower order terms, including the Klein-Gordon equation. We improve the upper bounds on blow-up solutions previously obtained by Killip, Stovall and Vişan [22]. Our proof uses the similarity variables' setting. We consider the equation in that setting as a perturbation of the conformal case, and we handle the extra terms thanks to the ideas we already developed in [16] for perturbations of the pure power conformal case with lower order terms.
    Mathematics Subject Classification: 35L05, 35B20, 35B44.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    C. Antonini and F. Merle, Optimal bounds on positive blow-up solutions for a semilinear wave equation, Internat. Math. Res. Notices, (2001), 1141-1167.doi: 10.1155/S107379280100054X.

    [2]

    P. Bizoń, P. Breitenlohner, D. Maison and A. Wasserman, Self-similar solutions of the cubic wave equation, Nonlinearity, 23 (2010), 225-236.doi: 10.1088/0951-7715/23/2/002.

    [3]

    P. Bizoń, T. Chmaj and N. Szpak, Dynamics near the threshold for blowup in the one-dimensional focusing nonlinear Klein-Gordon equation, J. Math. Phys., 52 (2011), 103703, 11.doi: 10.1063/1.3645363.

    [4]

    P. Bizoń, T. Chmaj and Z. Tabor, On blowup for semilinear wave equations with a focusing nonlinearity, Nonlinearity, 17 (2004), 2187-2201.doi: 10.1088/0951-7715/17/6/009.

    [5]

    R. Côte and H. Zaag, Construction of a multi-soliton blow-up solution to the semilinear wave equation in one space dimension, Comm. Pure Appl. Math., 66 (2013), 1541-1581.doi: 10.1002/cpa.21452.

    [6]

    R. Donninger, M. Huang, J. Krieger and W. SchlagExotic blowup solutions for the $u^5$ focusing wave equation in $\mathbbR^3$, (2012). preprint, arXiv:1212.4718.

    [7]

    R. Donninger and W. Schlag, Numerical study of the blowup/global existence dichotomy for the focusing cubic nonlinear Klein-Gordon equation, Nonlinearity, 24 (2011), 2547-2562.doi: 10.1088/0951-7715/24/9/009.

    [8]

    R. Donninger and B. Schörkhuber, Stable self-similar blow up for energy subcritical wave equations, Dyn. Partial Differ. Equ., 9 (2012), 63-87.doi: 10.4310/DPDE.2012.v9.n1.a3.

    [9]

    _________Stable self-similar blow up for energy supercritical wave equations, (2012). preprint, arXiv:1207.7046.

    [10]

    T. Duyckaerts, C. Kenig and F. Merle, Universality of blow-up profile for small radial type {II blow-up solutions of the energy-critical wave equation}, J. Eur. Math. Soc. (JEMS), 13 (2011), 533-599.doi: 10.4171/JEMS/261.

    [11]

    ________, Classification of radial solutions of the focusing, energy-critical wave equation, Cambridge J. Math, 1 (2013), 75-144.doi: 10.4310/CJM.2013.v1.n1.a3.

    [12]

    ________, Profiles of bounded radial solutions of the focusing, energy-critical wave equation, Geom. Funct. Anal., 22 (2012), 639-698.doi: 10.1007/s00039-012-0174-7.

    [13]

    ________, Universality of the blow-up profile for small type II blow-up solutions of the energy-critical wave equation: the nonradial case, J. Eur. Math. Soc. (JEMS), 14 (2012), 1389-1454.doi: 10.4171/JEMS/336.

    [14]

    T. Duyckaerts and F. Merle, Dynamics of threshold solutions for energy-critical wave equation, Int. Math. Res. Pap. IMRP, (2008), pp. Art ID rpn002, 67.doi: 10.1093/imrp/rpn002.

    [15]

    M. Hamza and H. Zaag, Blow-up behavior for the Klein-Gordon and other perturbed semilinear wave equations, Bull. Sci. Math., (2013), to appear.doi: 10.1016/j.bulsci.2013.05.004.

    [16]

    ________, A Lyapunov functional and blow-up results for a class of perturbations for semilinear wave equations in the critical case, J. Hyperbolic Differ. Equ., 9 (2012), 195-221.doi: 10.1142/S0219891612500063.

    [17]

    ________, A Lyapunov functional and blow-up results for a class of perturbed semilinear wave equations, Nonlinearity, 25 (2012), 2759-2773.doi: 10.1088/0951-7715/25/9/2759.

    [18]

    S. Ibrahim, N. Masmoudi, and K. Nakanishi, Scattering threshold for the focusing nonlinear Klein-Gordon equation, Anal. PDE, 4 (2011), 405-460.doi: 10.2140/apde.2011.4.405.

    [19]

    ________, Threshold solutions in the case of mass-shift for the critical klein-gordon equation, Trans. Amer. Math. Soc., (2013), to appear.

    [20]

    C. E. Kenig and F. Merle, Global well-posedness, scattering and blow-up for the energy-critical focusing non-linear wave equation, Acta Mathematica, 201 (2008), 147-212.doi: 10.1007/s11511-008-0031-6.

    [21]

    ________, Radial solutions to energy supercritical wave equations in odd dimensions, Discrete Contin. Dyn. Syst., 31 (2011), 1365-1381.doi: 10.3934/dcds.2011.31.1365.

    [22]

    R. Killip, B. Stovall, and M. Vişan, Blowup behaviour for the nonlinear Klein-Gordon equation, Math. Ann., (2013), to appear.doi: 10.1007/s00208-013-0960-z.

    [23]

    R. Killip and M. VişanSmooth solutions to the nonlinear wave equation can blow up on Cantor sets, (2011). arXiv:1103.5257v1.

    [24]

    J. Krieger, K. Nakanishi and W. Schlag, Global dynamics away from the ground state for the energy-critical nonlinear wave equation, Amer. J. Math., 135 (2013), 935-965.doi: 10.1353/ajm.2013.0034.

    [25]

    ________, Global dynamics of the nonradial energy-critical wave equation above the ground state energy, Discrete Contin. Dyn. Syst. 33 (2013), 2423-2450.doi: 10.3934/dcds.2013.33.2423.

    [26]

    J. Krieger and W. Schlag, On the focusing critical semi-linear wave equation, Amer. J. Math., 129 (2007), 843-913.doi: 10.1353/ajm.2007.0021.

    [27]

    H. A. Levine, Instability and nonexistence of global solutions to nonlinear wave equations of the form $P u_{t t} = -A u + \mathcal F (u)$, Trans. Amer. Math. Soc., 192 (1974), 1-21.

    [28]

    F. Merle and H. Zaag, Determination of the blow-up rate for the semilinear wave equation, Amer. J. Math., 125 (2003), 1147-1164.doi: 10.1353/ajm.2003.0033.

    [29]

    ________, Blow-up rate near the blow-up surface for semilinear wave equations, Internat. Math. Res. Notices, (2005), 1127-1156.doi: 10.1155/IMRN.2005.1127.

    [30]

    ________, Determination of the blow-up rate for a critical semilinear wave equation, Math. Ann., 331 (2005), 395-416.doi: 10.1007/s00208-004-0587-1.

    [31]

    ________, Existence and universality of the blow-up profile for the semilinear wave equation in one space dimension, J. Funct. Anal., 253 (2007), 43-121.doi: 10.1016/j.jfa.2007.03.007.

    [32]

    ________, Openness of the set of non characteristic points and regularity of the blow-up curve for the 1 d semilinear wave equation, Comm. Math. Phys., 282 (2008), 55-86.doi: 10.1007/s00220-008-0532-3.

    [33]

    ________, Isolatedness of characteristic points for a semilinear wave equation in one space dimension, in Séminaire sur les Équations aux Dérivées Partielles, 2009-2010, École Polytech., Palaiseau, 2010, Exp. No. 11, 10p.

    [34]

    ________, Blow-up behavior outside the origin for a semilinear wave equation in the radial case, Bull. Sci. Math., 135 (2011), 353-373.doi: 10.1016/j.bulsci.2011.03.001.

    [35]

    ________, Existence and classification of characteristic points at blow-up for a semilinear wave equation in one space dimension, Amer. J. Math., 134 (2012), 581-648.doi: 10.1353/ajm.2012.0021.

    [36]

    ________, Isolatedness of characteristic points for a semilinear wave equation in one space dimension, Duke Math. J., 161 (2012), 2837-2908.doi: 10.1215/00127094-1902040.

    [37]

    K. Nakanishi and W. Schlag, "Invariant Manifolds and Dispersive Hamiltonian Evolution Equations," Zurich Lectures in Advanced Mathematics, European Mathematical Society (EMS), Zürich, 2011.doi: 10.4171/095.

    [38]

    G. B. Whitham, "Linear and Nonlinear Waves," Pure and Applied Mathematics (New York), John Wiley & Sons Inc., New York, 1999. Reprint of the 1974 original, A Wiley-Interscience Publication.doi: 10.1002/9781118032954.

  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(102) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return