November  2013, 18(9): 2441-2455. doi: 10.3934/dcdsb.2013.18.2441

Spreading speed and traveling waves for a two-species weak competition system with free boundary

1. 

Department of Applied Mathematics, National University of Tainan, Tainan 700, Taiwan

Received  May 2013 Revised  July 2013 Published  September 2013

In this paper, we will focus on the spreading speed for a Lotka-Volterra type weak competition model with free boundary in one-dimensional habitat. Based on the comparison principle for free boundary problems, we provide some estimates of the spreading speed. Also, we deal with traveling wave solutions for the same model and show that there exists a traveling wave solution with monotone profile using a shooting method and the Schauder's fixed point theorem.
Citation: Chang-Hong Wu. Spreading speed and traveling waves for a two-species weak competition system with free boundary. Discrete and Continuous Dynamical Systems - B, 2013, 18 (9) : 2441-2455. doi: 10.3934/dcdsb.2013.18.2441
References:
[1]

G. Bunting, Y. Du and K. Krakowski, Spreading speed revisited: Analysis of a free boundary model, Networks and Heterogeneous Media (NHM), 7 (2012), 583-603. doi: 10.3934/nhm.2012.7.583.

[2]

C.-H. Chang and C.-C. Chen, Travelling wave solutions of a free boundary problem for a two-species competitive model, Communications on Pure and Applied Analysis (CPAA), 12 (2012), 1065-1074. doi: 10.3934/cpaa.2013.12.1065.

[3]

X. F. Chen and A. Friedman, A free boundary problem arising in a model of wound healing, SIAM Journal on Mathematical Analysis, 32 (2000), 778-800. doi: 10.1137/S0036141099351693.

[4]

Y. Du and Z. Guo, Spreading-vanishing dichotomy in a diffusive logistic model with a free boundary, II, Journal of Differential Equations, 250 (2011), 4336-4366. doi: 10.1016/j.jde.2011.02.011.

[5]

Y. Du, Z. Guo and R. Peng, A diffusive logistic model with a free boundary in time-periodic environment, Journal of Functional Analysis, 265 (2013), 2089-2142. doi: 10.1016/j.jfa.2013.07.016.

[6]

Y. Du and Z. Lin, Spreading-vanishing dichotomy in the diffsive logistic model with a free boundary, SIAM Journal on Mathematical Analysis, 42 (2010), 377-405. Correction in: http://turing.une.edu.au/~ydu/papers/DuLin-siam-10-correction.pdf. doi: 10.1137/090771089.

[7]

Y. Du and Z. G. Lin, The diffusive competition model with a free boundary: Invasion of a superior or inferior competitor, Discrete Cont. Dyn. Syst. (Ser. B), to appear.

[8]

Y. Du and B. Lou, Spreading and vanishing in nonlinear diffusion problems with free boundaries, J. Eur. Math. Soc., to appear.

[9]

P. Feng and Z. Zhou, Finite traveling wave solutions in a degenerate cross-diffusion model for bacterial colony, Communications on Pure and Applied Analysis (CPAA), 6 (2007), 1145-1165. doi: 10.3934/cpaa.2007.6.1145.

[10]

J.-S. Guo and C.-H. Wu, On a free boundary problem for a two-species weak competition system, Journal of Dynamics and Differential Equations, 24 (2012), 873-895. doi: 10.1007/s10884-012-9267-0.

[11]

D. Hilhorst, M. Mimura and R. Schtzle, Vanishing latent heat limit in a Stefan-like problem arising in biology, Nonlinear Analysis: Real World Applications, 4 (2003), 261-285. doi: 10.1016/S1468-1218(02)00009-3.

[12]

Y. Kaneko and Y. Yamada, A free boundary problem for a reaction-diffusion equation appearing in ecology, Adv. Math. Sci. Appl., 21 (2011) 467-492.

[13]

Z. G. Lin, A free boundary problem for a predator-prey model, Nonlinearity, 20 (2007), 1883-1892. doi: 10.1088/0951-7715/20/8/004.

[14]

M. Mimura, Y. Yamada and S. Yotsutani, A free boundary problem in ecology, Japan Journal of Applied Mathematics, 2 (1985), 151-186. doi: 10.1007/BF03167042.

[15]

M. Mimura, Y. Yamada and S. Yotsutani, Stability analysis for free boundary problems in ecology, Hiroshima Math. J., 16 (1986), 477-498.

[16]

M. Mimura, Y. Yamada and S. Yotsutani, Free boundary problems for some reaction-diffusion equations, Hiroshima Math. J., 17 (1987), 241-280.

[17]

R. Peng and X.-Q. Zhao, The diffusive logistic model with a free boundary and seasonal succession, Discrete and Continuous Dynamical Systems - Series A (DCDS-A), 33 (2013), 2007-2031. doi: 10.3934/dcds.2013.33.2007.

[18]

M. M. Tang and P. C. Fife, Propagating fronts for competing species equations with diffusion, Archive for Rational Mechanics and Analysis, 73 (1980), 69-77. doi: 10.1007/BF00283257.

[19]

M. X. Wang, On some free boundary problems of the prey-predator model, preprint, arXiv:1301.2063.

show all references

References:
[1]

G. Bunting, Y. Du and K. Krakowski, Spreading speed revisited: Analysis of a free boundary model, Networks and Heterogeneous Media (NHM), 7 (2012), 583-603. doi: 10.3934/nhm.2012.7.583.

[2]

C.-H. Chang and C.-C. Chen, Travelling wave solutions of a free boundary problem for a two-species competitive model, Communications on Pure and Applied Analysis (CPAA), 12 (2012), 1065-1074. doi: 10.3934/cpaa.2013.12.1065.

[3]

X. F. Chen and A. Friedman, A free boundary problem arising in a model of wound healing, SIAM Journal on Mathematical Analysis, 32 (2000), 778-800. doi: 10.1137/S0036141099351693.

[4]

Y. Du and Z. Guo, Spreading-vanishing dichotomy in a diffusive logistic model with a free boundary, II, Journal of Differential Equations, 250 (2011), 4336-4366. doi: 10.1016/j.jde.2011.02.011.

[5]

Y. Du, Z. Guo and R. Peng, A diffusive logistic model with a free boundary in time-periodic environment, Journal of Functional Analysis, 265 (2013), 2089-2142. doi: 10.1016/j.jfa.2013.07.016.

[6]

Y. Du and Z. Lin, Spreading-vanishing dichotomy in the diffsive logistic model with a free boundary, SIAM Journal on Mathematical Analysis, 42 (2010), 377-405. Correction in: http://turing.une.edu.au/~ydu/papers/DuLin-siam-10-correction.pdf. doi: 10.1137/090771089.

[7]

Y. Du and Z. G. Lin, The diffusive competition model with a free boundary: Invasion of a superior or inferior competitor, Discrete Cont. Dyn. Syst. (Ser. B), to appear.

[8]

Y. Du and B. Lou, Spreading and vanishing in nonlinear diffusion problems with free boundaries, J. Eur. Math. Soc., to appear.

[9]

P. Feng and Z. Zhou, Finite traveling wave solutions in a degenerate cross-diffusion model for bacterial colony, Communications on Pure and Applied Analysis (CPAA), 6 (2007), 1145-1165. doi: 10.3934/cpaa.2007.6.1145.

[10]

J.-S. Guo and C.-H. Wu, On a free boundary problem for a two-species weak competition system, Journal of Dynamics and Differential Equations, 24 (2012), 873-895. doi: 10.1007/s10884-012-9267-0.

[11]

D. Hilhorst, M. Mimura and R. Schtzle, Vanishing latent heat limit in a Stefan-like problem arising in biology, Nonlinear Analysis: Real World Applications, 4 (2003), 261-285. doi: 10.1016/S1468-1218(02)00009-3.

[12]

Y. Kaneko and Y. Yamada, A free boundary problem for a reaction-diffusion equation appearing in ecology, Adv. Math. Sci. Appl., 21 (2011) 467-492.

[13]

Z. G. Lin, A free boundary problem for a predator-prey model, Nonlinearity, 20 (2007), 1883-1892. doi: 10.1088/0951-7715/20/8/004.

[14]

M. Mimura, Y. Yamada and S. Yotsutani, A free boundary problem in ecology, Japan Journal of Applied Mathematics, 2 (1985), 151-186. doi: 10.1007/BF03167042.

[15]

M. Mimura, Y. Yamada and S. Yotsutani, Stability analysis for free boundary problems in ecology, Hiroshima Math. J., 16 (1986), 477-498.

[16]

M. Mimura, Y. Yamada and S. Yotsutani, Free boundary problems for some reaction-diffusion equations, Hiroshima Math. J., 17 (1987), 241-280.

[17]

R. Peng and X.-Q. Zhao, The diffusive logistic model with a free boundary and seasonal succession, Discrete and Continuous Dynamical Systems - Series A (DCDS-A), 33 (2013), 2007-2031. doi: 10.3934/dcds.2013.33.2007.

[18]

M. M. Tang and P. C. Fife, Propagating fronts for competing species equations with diffusion, Archive for Rational Mechanics and Analysis, 73 (1980), 69-77. doi: 10.1007/BF00283257.

[19]

M. X. Wang, On some free boundary problems of the prey-predator model, preprint, arXiv:1301.2063.

[1]

Wentao Meng, Yuanxi Yue, Manjun Ma. The minimal wave speed of the Lotka-Volterra competition model with seasonal succession. Discrete and Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021265

[2]

Jong-Shenq Guo, Ying-Chih Lin. The sign of the wave speed for the Lotka-Volterra competition-diffusion system. Communications on Pure and Applied Analysis, 2013, 12 (5) : 2083-2090. doi: 10.3934/cpaa.2013.12.2083

[3]

Gary Bunting, Yihong Du, Krzysztof Krakowski. Spreading speed revisited: Analysis of a free boundary model. Networks and Heterogeneous Media, 2012, 7 (4) : 583-603. doi: 10.3934/nhm.2012.7.583

[4]

Jiamin Cao, Peixuan Weng. Single spreading speed and traveling wave solutions of a diffusive pioneer-climax model without cooperative property. Communications on Pure and Applied Analysis, 2017, 16 (4) : 1405-1426. doi: 10.3934/cpaa.2017067

[5]

Anthony W. Leung, Xiaojie Hou, Wei Feng. Traveling wave solutions for Lotka-Volterra system re-visited. Discrete and Continuous Dynamical Systems - B, 2011, 15 (1) : 171-196. doi: 10.3934/dcdsb.2011.15.171

[6]

Zengji Du, Shuling Yan, Kaige Zhuang. Traveling wave fronts in a diffusive and competitive Lotka-Volterra system. Discrete and Continuous Dynamical Systems - S, 2021, 14 (9) : 3097-3111. doi: 10.3934/dcdss.2021010

[7]

Jong-Shenq Guo, Ken-Ichi Nakamura, Toshiko Ogiwara, Chang-Hong Wu. The sign of traveling wave speed in bistable dynamics. Discrete and Continuous Dynamical Systems, 2020, 40 (6) : 3451-3466. doi: 10.3934/dcds.2020047

[8]

Chiun-Chuan Chen, Li-Chang Hung. Nonexistence of traveling wave solutions, exact and semi-exact traveling wave solutions for diffusive Lotka-Volterra systems of three competing species. Communications on Pure and Applied Analysis, 2016, 15 (4) : 1451-1469. doi: 10.3934/cpaa.2016.15.1451

[9]

Cheng-Hsiung Hsu, Ting-Hui Yang. Traveling plane wave solutions of delayed lattice differential systems in competitive Lotka-Volterra type. Discrete and Continuous Dynamical Systems - B, 2010, 14 (1) : 111-128. doi: 10.3934/dcdsb.2010.14.111

[10]

Zhiguo Wang, Hua Nie, Yihong Du. Asymptotic spreading speed for the weak competition system with a free boundary. Discrete and Continuous Dynamical Systems, 2019, 39 (9) : 5223-5262. doi: 10.3934/dcds.2019213

[11]

Meng Zhao, Wan-Tong Li, Wenjie Ni. Spreading speed of a degenerate and cooperative epidemic model with free boundaries. Discrete and Continuous Dynamical Systems - B, 2020, 25 (3) : 981-999. doi: 10.3934/dcdsb.2019199

[12]

Aiyong Chen, Chi Zhang, Wentao Huang. Limit speed of traveling wave solutions for the perturbed generalized KdV equation. Discrete and Continuous Dynamical Systems - S, 2022  doi: 10.3934/dcdss.2022048

[13]

Yoichi Enatsu, Emiko Ishiwata, Takeo Ushijima. Traveling wave solution for a diffusive simple epidemic model with a free boundary. Discrete and Continuous Dynamical Systems - S, 2021, 14 (3) : 835-850. doi: 10.3934/dcdss.2020387

[14]

Linghai Zhang. Wave speed analysis of traveling wave fronts in delayed synaptically coupled neuronal networks. Discrete and Continuous Dynamical Systems, 2014, 34 (5) : 2405-2450. doi: 10.3934/dcds.2014.34.2405

[15]

Shuang-Ming Wang, Zhaosheng Feng, Zhi-Cheng Wang, Liang Zhang. Spreading speed and periodic traveling waves of a time periodic and diffusive SI epidemic model with demographic structure. Communications on Pure and Applied Analysis, 2022, 21 (6) : 2005-2034. doi: 10.3934/cpaa.2021145

[16]

Mohammed Mesk, Ali Moussaoui. On an upper bound for the spreading speed. Discrete and Continuous Dynamical Systems - B, 2022, 27 (7) : 3897-3912. doi: 10.3934/dcdsb.2021210

[17]

Yuzo Hosono. Traveling waves for a diffusive Lotka-Volterra competition model I: singular perturbations. Discrete and Continuous Dynamical Systems - B, 2003, 3 (1) : 79-95. doi: 10.3934/dcdsb.2003.3.79

[18]

Xiao He, Sining Zheng. Protection zone in a modified Lotka-Volterra model. Discrete and Continuous Dynamical Systems - B, 2015, 20 (7) : 2027-2038. doi: 10.3934/dcdsb.2015.20.2027

[19]

Guo-Bao Zhang, Ruyun Ma, Xue-Shi Li. Traveling waves of a Lotka-Volterra strong competition system with nonlocal dispersal. Discrete and Continuous Dynamical Systems - B, 2018, 23 (2) : 587-608. doi: 10.3934/dcdsb.2018035

[20]

Bang-Sheng Han, Zhi-Cheng Wang, Zengji Du. Traveling waves for nonlocal Lotka-Volterra competition systems. Discrete and Continuous Dynamical Systems - B, 2020, 25 (5) : 1959-1983. doi: 10.3934/dcdsb.2020011

2020 Impact Factor: 1.327

Metrics

  • PDF downloads (128)
  • HTML views (0)
  • Cited by (13)

Other articles
by authors

[Back to Top]