\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Global solutions and exponential attractors of a parabolic-parabolic system for chemotaxis with subquadratic degradation

Abstract Related Papers Cited by
  • We construct the global bounded solutions and the attractors of a parabolic-parabolic chemotaxis-growth system in two- and three-dimensional smooth bounded domains. We derive new $L_p$ and $H^2$ uniform estimates for these solutions. We then construct the absorbing sets and the global attractors for the dynamical systems generated by the solutions. We also show the existence of exponential attractors by applying the existence theorem of Eden-Foias-Nicolaenko-Temam.
    Mathematics Subject Classification: 37L30, 35B41, 35K51, 35K57, 35K92, 92C17.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    M. Aida, T. Tsujikawa, M. Efendiev, A. Yagi and M. Mimura, Lower estimate of the attractor dimension for a chemotaxis growth system, J. London Math. Soc. (2), 74 (2006), 453-474.doi: 10.1112/S0024610706023015.

    [2]

    S. Childress and J. K. Percus, Nonlinear aspects of chemotaxis, Math. Biosci., 56 (1981), 217-237.doi: 10.1016/0025-5564(81)90055-9.

    [3]

    R. Dautray and J. L. Lions, Mathematical Analysis and Numerical Methods for Science and Technology, Vol. 5: Evolution Problems I, With the collaboration of Michel Artola, Michel Cessenat and Hélène Lanchon. Translated from the French by Alan Craig. Springer-Verlag, Berlin, 1992.doi: 10.1007/978-3-642-58090-1.

    [4]

    A. Eden, C. Foias, B. Nicolaenko and R. Temam, Ensembles inertiels pour des équations d'évolution dissipatives, (French) [Inertial sets for dissipative evolution equations], C. R. Acad. Sci. Paris, 310 (1990), 559-562.

    [5]

    A. Eden, C. Foias, B. Nicolaenko and R. Temam, Exponential Attractors for Dissipative Evolution Equations, Research in Applied Mathematics, vol. 37, John-Wiley and Sons, Chichester, 1994.

    [6]

    M. A. Herrero and J. J. L. Velázquez, A blow-up mechanism for a chemotaxis model, Ann. Scoula Norm. Sup. Pisa Cl. Sci. IV, 24 (1997), 633-683.

    [7]

    T. Hillen and K. J. Painter, A user's guide to PDE models for chemotaxis, J. Math. Biol., 58 (2009), 183-217.doi: 10.1007/s00285-008-0201-3.

    [8]

    D. Horstmann, From 1970 until present: The Keller-Segel model in chemotaxis and its consequences I, Jahresber. Deutsch. Math.-Verein., 105 (2003), 103-165.

    [9]

    D. Horstmann, From 1970 until present: The Keller-Segel model in chemotaxis and its consequences II, Jahresber. Deutsch. Math.-Verein., 106 (2004), 51-69.

    [10]

    D. Horstmann and G. Wang, Blow-up in a chemotaxis model without symmetry assumptions, European J. Appl. Math., 12 (2001), 159-177.doi: 10.1017/S0956792501004363.

    [11]

    W. Jäger and S. Luckhaus, On explosions of solutions to a system of partial differential equations modelling chemotaxis, Trans. Amer. Math. Soc., 329 (1992), 819-824.doi: 10.1090/S0002-9947-1992-1046835-6.

    [12]

    E. F. Keller and L. A. Segel, Initiation of slime mold aggregation viewed as an instability, J. Theor. Biol., 26 (1970), 399-415.doi: 10.1016/0022-5193(70)90092-5.

    [13]

    N. Kurata, K. Kuto, K. Osaki, T. Tsujikawa and T. Sakurai, Bifurcation phenomena of pattern solution to Mimura-Tsujikawa model in one dimension, GAKUTO Internat. Ser. Math. Sci. Appl., 29 (2008), 265-278.

    [14]

    K. Kuto, K. Osaki, T. Sakurai and T. Tsujikawa, Spatial pattern formation in a chemotaxis-diffusion-growth model, Physica D, 241 (2012), 1629-1639.doi: 10.1016/j.physd.2012.06.009.

    [15]

    M. Mimura and T. Tsujikawa, Aggregating pattern dynamics in a chemotaxis model including growth, Physica A, 230 (1996), 499-543.doi: 10.1016/0378-4371(96)00051-9.

    [16]

    J. D. Murray, Mathematical Biology, II: Spatial Models and Biomedical Applications, 3rd edition, Springer-Verlag, New York, 2003.

    [17]

    E. Nakaguchi and K. Osaki, Global existence of solutions to a parabolic-parabolic system for chemotaxis with weak degradation, Nonlinear Anal., 74 (2011), 286-297.doi: 10.1016/j.na.2010.08.044.

    [18]

    T. Nagai, Blow-up of radially symmetric solutions to a chemotaxis system, Adv. Math. Sci. Appl., 5 (1995), 581-601.

    [19]

    T. Nagai, Blow up of nonradial solutions to parabolic-elliptic systems modeling chemotaxis in two-dimensional domain, J. Inequal. Appl., 6 (2001), 37-55.doi: 10.1155/S1025583401000042.

    [20]

    K. Osaki, T. Tsujikawa, A. Yagi and M. Mimura, Exponential attractor for a chemotaxis-growth system of equations, Nonlinear Anal., 51 (2002), 119-144.doi: 10.1016/S0362-546X(01)00815-X.

    [21]

    K. Osaki and A. Yagi, Finite dimensional attractor for one-dimensional Keller-Segel equations, Funkcial. Ekvac., 44 (2001), 441-469.

    [22]

    K. Osaki and A. Yagi, Global existence for a chemotaxis-growth system in $\mathbbR^2$, Adv. Math. Sci. Appl., 12 (2002), 587-606.

    [23]

    K. J. Painter and T. Hillen, Spatio-temporal chaos in a chemotaxis model, Physica D: Nonlinear Phenomena, 240 (2011), 363-375.doi: 10.1016/j.physd.2010.09.011.

    [24]

    T. Suzuki, Free Energy and Self-Interacting Particles, Progress in Nonlinear Differential Equations and their Applications, 62. Birkhäuser Boston, Inc., Boston, MA, 2005.doi: 10.1007/0-8176-4436-9.

    [25]

    J. I. Tello and M. Winkler, A chemotaxis system with logistic source, Comm. Partial Differential Equations, 32 (2007), 849-877.doi: 10.1080/03605300701319003.

    [26]

    R. Temam, Infinite-Dimensional Dynamical Systems in Mechanics and Physics, 2nd edition, Applied Mathematical Sciences, 68. Springer-Verlag, New York, 1997.

    [27]

    M. J. Tindall, P. K. Maini, S. L. Porter and J. P. Armitage, Overview of mathematical approaches used to model bacterial chemotaxis II: Bacterial populations, Bull. Math. Biol., 70 (2008), 1570-1607.doi: 10.1007/s11538-008-9322-5.

    [28]

    H. Triebel, Interpolation Theory, Function Spaces, Differential Operators, 2nd revised and enlarged edition, Johann Ambrosius Barth Verlag, Heidelberg/Leipzig, 1995.

    [29]

    M. Winkler, Chemotaxis with logistic source: Very weak global solutions and their boundedness properties, J. Math. Anal. Appl., 348 (2008), 708-729.doi: 10.1016/j.jmaa.2008.07.071.

    [30]

    M. Winkler, Boundedness in the higher-dimensional parabolic-parabolic chemotaxis system with logistic source, Comm. Partial Differential Equations, 35 (2010), 1516-1537.doi: 10.1080/03605300903473426.

    [31]

    M. Winkler, Aggregation vs. global diffusive behavior in the higher-dimensional Keller-Segel model, J. Differential Equations, 248 (2010), 2889-2905.doi: 10.1016/j.jde.2010.02.008.

    [32]

    A. Yagi, Abstract Parabolic Evolution Equations and Their Applications, Springer Monographs in Mathematics. Springer-Verlag, Berlin, 2010.doi: 10.1007/978-3-642-04631-5.

  • 加载中
Open Access Under a Creative Commons license
SHARE

Article Metrics

HTML views() PDF downloads(225) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return