Citation: |
[1] |
N. D. Alikakos, $L^p$ bounds of solutions of reaction-diffusion equations, Comm. Partial Differential Equations, 4 (1979), 827-868.doi: 10.1080/03605307908820113. |
[2] |
D. G. Aronson, The porous medium equation. Nonlinear diffusion problems, Lect. 2nd 1985 Sess. C. I. M. E., Montecatini Terme/Italy 1985, Lect. Notes Math., 1224 (1986), 1-46.doi: 10.1007/BFb0072687. |
[3] |
M. Chuai, W. Zeng, X. Yang, V. Boychenko, J. A. Glazier and C. J. Weijer, Cell movement during chick primitive streak formation, Dev. Biol., 296 (2006), 137-149.doi: 10.1016/j.ydbio.2006.04.451. |
[4] |
T. Cieślak and P. Laurençot, Finite time blow-up for a one-dimensional quasilinear parabolic-parabolic chemotaxis system, Ann. Inst. H. Poincaré Anal. Non Linéaire, 27 (2010), 437-446.doi: 10.1016/j.anihpc.2009.11.016. |
[5] |
T. Cieślak, P. Laurençot and C. Morales-Rodrigo, Global existence and convergence to steady-states in a chemorepulsion system, Banach Center Publ., 81 (2008), Polish Acad. Sci., Warsaw, 105-117.doi: 10.4064/bc81-0-7. |
[6] |
A. Friedman, Partial Differential Equations, Holt, Rinehart & Winston, New York, 1969. |
[7] |
M. A. Gates, V. M. Coupe, E. M. Torres, R. A. Fricker-Gares and S. B. Dunnett, Saptially and temporally restricted chemoattractant and repulsive cues direct the formation of the nigro-sriatal circuit, Euro. J. Neuroscicen, 19 (2004), 831-844. |
[8] |
D. Gilbarg and N. S. Trudinger, Elliptic Partial Differential Equations of Second Order, Grundlehren der Mathematischen Wissenschaften, Vol. 224. Springer-Verlag, Berlin-New York, 1977. |
[9] |
D. Henry, Geometric Theory of Semilinear Parabolic Equations, Lecture Notes in Mathematics, 840. Springer-Verlag, Berlin-New York, 1981. |
[10] |
M. A. Herrero and J. L. L. Velázquez, A blow-up mechanism for a chemotaxis model, Ann. Sc. Norm. Super. Pisa Cl. Sci., 24 (1997), 633-683. |
[11] |
T. Hillen and K. Painter, A users' guide to PDE models for chemotaxis, J. Math. Biol., 58 (2009), 183-217.doi: 10.1007/s00285-008-0201-3. |
[12] |
D. Horstmann, From 1970 until present: the Keller-Segel model in chemotaxis and its consequences. I, Jahresber. Deutsch. Math.- Verien, 105 (2003), 103-165. |
[13] |
D. Horstmann and G. Wang, Blow-up in a chemotaxis model without symmetry assumptions, European J. Appl. Math., 12 (2001), 159-177.doi: 10.1017/S0956792501004363. |
[14] |
D. Horstmann and M. Winkler, Boundedness vs. blow-up in a chemotaxis system, J. Differential Equations, 215 (2005), 52-107.doi: 10.1016/j.jde.2004.10.022. |
[15] |
W. Jäger and S. Luckhaus, On explosions of solutions to a system of partial differential equations modelling chemotaxis, Trans. Amer. Math. Soc., 329 (1992), 819-824.doi: 10.2307/2153966. |
[16] |
E. F. Keller and L. A. Segel, Initiation of slime mold aggregation viewed as an instaility, J. Theor. Biol., 26 (1970), 399-415.doi: 10.1016/0022-5193(70)90092-5. |
[17] |
R. Kowalczyk and Z. Szymańska, On the global existence of solutions to an aggregation model, J. Math. Anal. Appl., 343 (2008), 379-398.doi: 10.1016/j.jmaa.2008.01.005. |
[18] |
P. L. Lions, Résolution de problèmes elliptiques quasilinéaires, Arch. Rational Mech. Anal., 74 (1980), 335-353.doi: 10.1007/BF00249679. |
[19] |
M. Luca, A. Chavez-Ross, L. Edelstein-Keshet and A. Mogilner, Chemotactic signalling, microglia, and alzheimer's disease senile plague: is there a connection? Bull. Math. Biol., 65 (2003), 673-730. |
[20] |
T. Nagai, Blow-up of nonradial solutions to parabolic-elliptic systems modelling chemotaxis in two-dimensional domains, J. of Inequal. & Appl., 6 (2001), 37-55.doi: 10.1155/S1025583401000042. |
[21] |
K. Painter and T. Hillen, Volume-filling and quorum-sensing in models for chemosensitive movement, Can. Appl. Math. Quart., 10 (2002), 501-543. |
[22] |
B. Perthame, C. Schmeiser, M. Tang and N. Vauchelet, Traveling plateaus for a hyperbolic Keller-Segel system with attraction and repulsion-existence and branching instabilities, Nonlinearity, 24 (2011), 1253-1270.doi: 10.1088/0951-7715/24/4/012. |
[23] |
Y. Tao and Z.A. Wang, Competing effects of attraction vs. repulsion in chemotaxis, Math. Models Methods Appl. Sci., 23 (2013), 1-36.doi: 10.1142/S0218202512500443. |
[24] |
Y. Tao and M. Winkler, Boundedness in a quasilinear parabolic-parabolic Keller-Segel system with subcritical sensitivity, J. Differential Equations, 252 (2012), 692-715.doi: 10.1016/j.jde.2011.08.019. |
[25] |
Y. Tao and M. Winkler, Eventual smoothness and stabilization of large-data solutions in three-dimensional chemotaxis system with consumption of chemoattractant, J. Differential Equations, 252 (2012), 2520-2534.doi: 10.1016/j.jde.2011.07.010. |
[26] |
Y. Tao and M. Winkler, Locally bounded global soutions in a three-dimensional chemotaxis-Stokes system with nonlinear diffusion, Ann. Inst. H. Poincaré, Analyse Non Linéaire, 30 (2013), 157-178.doi: 10.1016/j.anihpc.2012.07.002. |
[27] |
M. Winkler, A critical exponent in a degenerate parabolic equation, Math. Methods Appl. Sci., 25 (2002), 911-925.doi: 10.1002/mma.319. |
[28] |
M. Winkler, Aggregation vs. global diffusive behavior in the higher-dimensional Keller-Segel model, J. Differential Equations, 248 (2010), 2889-2905.doi: 10.1016/j.jde.2010.02.008. |
[29] |
M. Winkler, Finite-time blow-up in the higher-dimensional parabolic-parabolic Keller-Segel system, J. Math. Pures Appl., 99 (2013).doi: 10.1016/j.matpur.2013.01.020. |