December  2013, 18(10): 2705-2722. doi: 10.3934/dcdsb.2013.18.2705

Global dynamics in a higher-dimensional repulsion chemotaxis model with nonlinear sensitivity

1. 

Department of Applied Mathematics, Dong Hua University, Shanghai 200051

Received  November 2012 Revised  March 2013 Published  October 2013

This paper deals with the repulsion chemotaxis system $$ \left\{ \begin{array}{ll} u_t=\Delta u +\nabla \cdot (f(u)\nabla v), & x\in\Omega, \ t>0, \\ v_t=\Delta v +u-v, & x\in\Omega, \ t>0, \end{array} \right. $$ under homogeneous Neumann boundary conditions in a smooth bounded convex domain $\Omega\subset\mathbb{R}^n$ with $n\ge 3$, where $f(u)$ is the density-dependent chemotactic sensitivity function satisfying $$ f \in C^2([0, \infty)),      f(0)=0, 0 < f(u) \le K(u+1)^{\alpha}          for     all     u > 0 $$ with some $K>0$ and $\alpha>0$.
    It is proved that under the assumptions that $0\not\equiv u_0\in C^0(\bar{\Omega})$ and $v_0\in C^1(\bar{\Omega})$ are nonnegative and that $\alpha<\frac{4}{n+2}$, the classical solutions to the above system are uniformly-in-time bounded. Moreover, it is shown that for any given $(u_0, v_0)$, the corresponding solution $(u, v)$ converges to $(\bar{u}_0, \bar{u}_0)$ as time goes to infinity, where $\bar{u}_0 :=\frac{1}{\Omega} f_{\Omega} u_0$.
Citation: Youshan Tao. Global dynamics in a higher-dimensional repulsion chemotaxis model with nonlinear sensitivity. Discrete and Continuous Dynamical Systems - B, 2013, 18 (10) : 2705-2722. doi: 10.3934/dcdsb.2013.18.2705
References:
[1]

N. D. Alikakos, $L^p$ bounds of solutions of reaction-diffusion equations, Comm. Partial Differential Equations, 4 (1979), 827-868. doi: 10.1080/03605307908820113.

[2]

D. G. Aronson, The porous medium equation. Nonlinear diffusion problems, Lect. 2nd 1985 Sess. C. I. M. E., Montecatini Terme/Italy 1985, Lect. Notes Math., 1224 (1986), 1-46. doi: 10.1007/BFb0072687.

[3]

M. Chuai, W. Zeng, X. Yang, V. Boychenko, J. A. Glazier and C. J. Weijer, Cell movement during chick primitive streak formation, Dev. Biol., 296 (2006), 137-149. doi: 10.1016/j.ydbio.2006.04.451.

[4]

T. Cieślak and P. Laurençot, Finite time blow-up for a one-dimensional quasilinear parabolic-parabolic chemotaxis system, Ann. Inst. H. Poincaré Anal. Non Linéaire, 27 (2010), 437-446. doi: 10.1016/j.anihpc.2009.11.016.

[5]

T. Cieślak, P. Laurençot and C. Morales-Rodrigo, Global existence and convergence to steady-states in a chemorepulsion system, Banach Center Publ., 81 (2008), Polish Acad. Sci., Warsaw, 105-117. doi: 10.4064/bc81-0-7.

[6]

A. Friedman, Partial Differential Equations, Holt, Rinehart & Winston, New York, 1969.

[7]

M. A. Gates, V. M. Coupe, E. M. Torres, R. A. Fricker-Gares and S. B. Dunnett, Saptially and temporally restricted chemoattractant and repulsive cues direct the formation of the nigro-sriatal circuit, Euro. J. Neuroscicen, 19 (2004), 831-844.

[8]

D. Gilbarg and N. S. Trudinger, Elliptic Partial Differential Equations of Second Order, Grundlehren der Mathematischen Wissenschaften, Vol. 224. Springer-Verlag, Berlin-New York, 1977.

[9]

D. Henry, Geometric Theory of Semilinear Parabolic Equations, Lecture Notes in Mathematics, 840. Springer-Verlag, Berlin-New York, 1981.

[10]

M. A. Herrero and J. L. L. Velázquez, A blow-up mechanism for a chemotaxis model, Ann. Sc. Norm. Super. Pisa Cl. Sci., 24 (1997), 633-683.

[11]

T. Hillen and K. Painter, A users' guide to PDE models for chemotaxis, J. Math. Biol., 58 (2009), 183-217. doi: 10.1007/s00285-008-0201-3.

[12]

D. Horstmann, From 1970 until present: the Keller-Segel model in chemotaxis and its consequences. I, Jahresber. Deutsch. Math.- Verien, 105 (2003), 103-165.

[13]

D. Horstmann and G. Wang, Blow-up in a chemotaxis model without symmetry assumptions, European J. Appl. Math., 12 (2001), 159-177. doi: 10.1017/S0956792501004363.

[14]

D. Horstmann and M. Winkler, Boundedness vs. blow-up in a chemotaxis system, J. Differential Equations, 215 (2005), 52-107. doi: 10.1016/j.jde.2004.10.022.

[15]

W. Jäger and S. Luckhaus, On explosions of solutions to a system of partial differential equations modelling chemotaxis, Trans. Amer. Math. Soc., 329 (1992), 819-824. doi: 10.2307/2153966.

[16]

E. F. Keller and L. A. Segel, Initiation of slime mold aggregation viewed as an instaility, J. Theor. Biol., 26 (1970), 399-415. doi: 10.1016/0022-5193(70)90092-5.

[17]

R. Kowalczyk and Z. Szymańska, On the global existence of solutions to an aggregation model, J. Math. Anal. Appl., 343 (2008), 379-398. doi: 10.1016/j.jmaa.2008.01.005.

[18]

P. L. Lions, Résolution de problèmes elliptiques quasilinéaires, Arch. Rational Mech. Anal., 74 (1980), 335-353. doi: 10.1007/BF00249679.

[19]

M. Luca, A. Chavez-Ross, L. Edelstein-Keshet and A. Mogilner, Chemotactic signalling, microglia, and alzheimer's disease senile plague: is there a connection? Bull. Math. Biol., 65 (2003), 673-730.

[20]

T. Nagai, Blow-up of nonradial solutions to parabolic-elliptic systems modelling chemotaxis in two-dimensional domains, J. of Inequal. & Appl., 6 (2001), 37-55. doi: 10.1155/S1025583401000042.

[21]

K. Painter and T. Hillen, Volume-filling and quorum-sensing in models for chemosensitive movement, Can. Appl. Math. Quart., 10 (2002), 501-543.

[22]

B. Perthame, C. Schmeiser, M. Tang and N. Vauchelet, Traveling plateaus for a hyperbolic Keller-Segel system with attraction and repulsion-existence and branching instabilities, Nonlinearity, 24 (2011), 1253-1270. doi: 10.1088/0951-7715/24/4/012.

[23]

Y. Tao and Z.A. Wang, Competing effects of attraction vs. repulsion in chemotaxis, Math. Models Methods Appl. Sci., 23 (2013), 1-36. doi: 10.1142/S0218202512500443.

[24]

Y. Tao and M. Winkler, Boundedness in a quasilinear parabolic-parabolic Keller-Segel system with subcritical sensitivity, J. Differential Equations, 252 (2012), 692-715. doi: 10.1016/j.jde.2011.08.019.

[25]

Y. Tao and M. Winkler, Eventual smoothness and stabilization of large-data solutions in three-dimensional chemotaxis system with consumption of chemoattractant, J. Differential Equations, 252 (2012), 2520-2534. doi: 10.1016/j.jde.2011.07.010.

[26]

Y. Tao and M. Winkler, Locally bounded global soutions in a three-dimensional chemotaxis-Stokes system with nonlinear diffusion, Ann. Inst. H. Poincaré, Analyse Non Linéaire, 30 (2013), 157-178. doi: 10.1016/j.anihpc.2012.07.002.

[27]

M. Winkler, A critical exponent in a degenerate parabolic equation, Math. Methods Appl. Sci., 25 (2002), 911-925. doi: 10.1002/mma.319.

[28]

M. Winkler, Aggregation vs. global diffusive behavior in the higher-dimensional Keller-Segel model, J. Differential Equations, 248 (2010), 2889-2905. doi: 10.1016/j.jde.2010.02.008.

[29]

M. Winkler, Finite-time blow-up in the higher-dimensional parabolic-parabolic Keller-Segel system, J. Math. Pures Appl., 99 (2013). doi: 10.1016/j.matpur.2013.01.020.

show all references

References:
[1]

N. D. Alikakos, $L^p$ bounds of solutions of reaction-diffusion equations, Comm. Partial Differential Equations, 4 (1979), 827-868. doi: 10.1080/03605307908820113.

[2]

D. G. Aronson, The porous medium equation. Nonlinear diffusion problems, Lect. 2nd 1985 Sess. C. I. M. E., Montecatini Terme/Italy 1985, Lect. Notes Math., 1224 (1986), 1-46. doi: 10.1007/BFb0072687.

[3]

M. Chuai, W. Zeng, X. Yang, V. Boychenko, J. A. Glazier and C. J. Weijer, Cell movement during chick primitive streak formation, Dev. Biol., 296 (2006), 137-149. doi: 10.1016/j.ydbio.2006.04.451.

[4]

T. Cieślak and P. Laurençot, Finite time blow-up for a one-dimensional quasilinear parabolic-parabolic chemotaxis system, Ann. Inst. H. Poincaré Anal. Non Linéaire, 27 (2010), 437-446. doi: 10.1016/j.anihpc.2009.11.016.

[5]

T. Cieślak, P. Laurençot and C. Morales-Rodrigo, Global existence and convergence to steady-states in a chemorepulsion system, Banach Center Publ., 81 (2008), Polish Acad. Sci., Warsaw, 105-117. doi: 10.4064/bc81-0-7.

[6]

A. Friedman, Partial Differential Equations, Holt, Rinehart & Winston, New York, 1969.

[7]

M. A. Gates, V. M. Coupe, E. M. Torres, R. A. Fricker-Gares and S. B. Dunnett, Saptially and temporally restricted chemoattractant and repulsive cues direct the formation of the nigro-sriatal circuit, Euro. J. Neuroscicen, 19 (2004), 831-844.

[8]

D. Gilbarg and N. S. Trudinger, Elliptic Partial Differential Equations of Second Order, Grundlehren der Mathematischen Wissenschaften, Vol. 224. Springer-Verlag, Berlin-New York, 1977.

[9]

D. Henry, Geometric Theory of Semilinear Parabolic Equations, Lecture Notes in Mathematics, 840. Springer-Verlag, Berlin-New York, 1981.

[10]

M. A. Herrero and J. L. L. Velázquez, A blow-up mechanism for a chemotaxis model, Ann. Sc. Norm. Super. Pisa Cl. Sci., 24 (1997), 633-683.

[11]

T. Hillen and K. Painter, A users' guide to PDE models for chemotaxis, J. Math. Biol., 58 (2009), 183-217. doi: 10.1007/s00285-008-0201-3.

[12]

D. Horstmann, From 1970 until present: the Keller-Segel model in chemotaxis and its consequences. I, Jahresber. Deutsch. Math.- Verien, 105 (2003), 103-165.

[13]

D. Horstmann and G. Wang, Blow-up in a chemotaxis model without symmetry assumptions, European J. Appl. Math., 12 (2001), 159-177. doi: 10.1017/S0956792501004363.

[14]

D. Horstmann and M. Winkler, Boundedness vs. blow-up in a chemotaxis system, J. Differential Equations, 215 (2005), 52-107. doi: 10.1016/j.jde.2004.10.022.

[15]

W. Jäger and S. Luckhaus, On explosions of solutions to a system of partial differential equations modelling chemotaxis, Trans. Amer. Math. Soc., 329 (1992), 819-824. doi: 10.2307/2153966.

[16]

E. F. Keller and L. A. Segel, Initiation of slime mold aggregation viewed as an instaility, J. Theor. Biol., 26 (1970), 399-415. doi: 10.1016/0022-5193(70)90092-5.

[17]

R. Kowalczyk and Z. Szymańska, On the global existence of solutions to an aggregation model, J. Math. Anal. Appl., 343 (2008), 379-398. doi: 10.1016/j.jmaa.2008.01.005.

[18]

P. L. Lions, Résolution de problèmes elliptiques quasilinéaires, Arch. Rational Mech. Anal., 74 (1980), 335-353. doi: 10.1007/BF00249679.

[19]

M. Luca, A. Chavez-Ross, L. Edelstein-Keshet and A. Mogilner, Chemotactic signalling, microglia, and alzheimer's disease senile plague: is there a connection? Bull. Math. Biol., 65 (2003), 673-730.

[20]

T. Nagai, Blow-up of nonradial solutions to parabolic-elliptic systems modelling chemotaxis in two-dimensional domains, J. of Inequal. & Appl., 6 (2001), 37-55. doi: 10.1155/S1025583401000042.

[21]

K. Painter and T. Hillen, Volume-filling and quorum-sensing in models for chemosensitive movement, Can. Appl. Math. Quart., 10 (2002), 501-543.

[22]

B. Perthame, C. Schmeiser, M. Tang and N. Vauchelet, Traveling plateaus for a hyperbolic Keller-Segel system with attraction and repulsion-existence and branching instabilities, Nonlinearity, 24 (2011), 1253-1270. doi: 10.1088/0951-7715/24/4/012.

[23]

Y. Tao and Z.A. Wang, Competing effects of attraction vs. repulsion in chemotaxis, Math. Models Methods Appl. Sci., 23 (2013), 1-36. doi: 10.1142/S0218202512500443.

[24]

Y. Tao and M. Winkler, Boundedness in a quasilinear parabolic-parabolic Keller-Segel system with subcritical sensitivity, J. Differential Equations, 252 (2012), 692-715. doi: 10.1016/j.jde.2011.08.019.

[25]

Y. Tao and M. Winkler, Eventual smoothness and stabilization of large-data solutions in three-dimensional chemotaxis system with consumption of chemoattractant, J. Differential Equations, 252 (2012), 2520-2534. doi: 10.1016/j.jde.2011.07.010.

[26]

Y. Tao and M. Winkler, Locally bounded global soutions in a three-dimensional chemotaxis-Stokes system with nonlinear diffusion, Ann. Inst. H. Poincaré, Analyse Non Linéaire, 30 (2013), 157-178. doi: 10.1016/j.anihpc.2012.07.002.

[27]

M. Winkler, A critical exponent in a degenerate parabolic equation, Math. Methods Appl. Sci., 25 (2002), 911-925. doi: 10.1002/mma.319.

[28]

M. Winkler, Aggregation vs. global diffusive behavior in the higher-dimensional Keller-Segel model, J. Differential Equations, 248 (2010), 2889-2905. doi: 10.1016/j.jde.2010.02.008.

[29]

M. Winkler, Finite-time blow-up in the higher-dimensional parabolic-parabolic Keller-Segel system, J. Math. Pures Appl., 99 (2013). doi: 10.1016/j.matpur.2013.01.020.

[1]

Aichao Liu, Binxiang Dai, Yuming Chen. Boundedness in a two species attraction-repulsion chemotaxis system with two chemicals. Discrete and Continuous Dynamical Systems - B, 2022  doi: 10.3934/dcdsb.2021306

[2]

Hai-Yang Jin, Tian Xiang. Repulsion effects on boundedness in a quasilinear attraction-repulsion chemotaxis model in higher dimensions. Discrete and Continuous Dynamical Systems - B, 2018, 23 (8) : 3071-3085. doi: 10.3934/dcdsb.2017197

[3]

Runlin Hu, Pan Zheng, Zhangqin Gao. Boundedness of solutions in a quasilinear chemo-repulsion system with nonlinear signal production. Evolution Equations and Control Theory, 2022  doi: 10.3934/eect.2022018

[4]

Wei Wang, Yan Li, Hao Yu. Global boundedness in higher dimensions for a fully parabolic chemotaxis system with singular sensitivity. Discrete and Continuous Dynamical Systems - B, 2017, 22 (10) : 3663-3669. doi: 10.3934/dcdsb.2017147

[5]

Xiangdong Zhao. Global boundedness of classical solutions to a logistic chemotaxis system with singular sensitivity. Discrete and Continuous Dynamical Systems - B, 2021, 26 (9) : 5095-5100. doi: 10.3934/dcdsb.2020334

[6]

Chun Huang. Global boundedness for a chemotaxis-competition system with signal dependent sensitivity and loop. Electronic Research Archive, 2021, 29 (5) : 3261-3279. doi: 10.3934/era.2021037

[7]

Yilong Wang, Zhaoyin Xiang. Boundedness in a quasilinear 2D parabolic-parabolic attraction-repulsion chemotaxis system. Discrete and Continuous Dynamical Systems - B, 2016, 21 (6) : 1953-1973. doi: 10.3934/dcdsb.2016031

[8]

Shijie Shi, Zhengrong Liu, Hai-Yang Jin. Boundedness and large time behavior of an attraction-repulsion chemotaxis model with logistic source. Kinetic and Related Models, 2017, 10 (3) : 855-878. doi: 10.3934/krm.2017034

[9]

Miaoqing Tian, Shujuan Wang, Xia Xiao. Global boundedness in a quasilinear two-species attraction-repulsion chemotaxis system with two chemicals. Discrete and Continuous Dynamical Systems - B, 2022  doi: 10.3934/dcdsb.2022071

[10]

Runlin Hu, Pan Zheng. On a quasilinear fully parabolic attraction or repulsion chemotaxis system with nonlinear signal production. Discrete and Continuous Dynamical Systems - B, 2022  doi: 10.3934/dcdsb.2022041

[11]

Johannes Lankeit, Yulan Wang. Global existence, boundedness and stabilization in a high-dimensional chemotaxis system with consumption. Discrete and Continuous Dynamical Systems, 2017, 37 (12) : 6099-6121. doi: 10.3934/dcds.2017262

[12]

Liangchen Wang, Jing Zhang, Chunlai Mu, Xuegang Hu. Boundedness and stabilization in a two-species chemotaxis system with two chemicals. Discrete and Continuous Dynamical Systems - B, 2020, 25 (1) : 191-221. doi: 10.3934/dcdsb.2019178

[13]

Xie Li, Zhaoyin Xiang. Boundedness in quasilinear Keller-Segel equations with nonlinear sensitivity and logistic source. Discrete and Continuous Dynamical Systems, 2015, 35 (8) : 3503-3531. doi: 10.3934/dcds.2015.35.3503

[14]

Hao Yu, Wei Wang, Sining Zheng. Boundedness of solutions to a fully parabolic Keller-Segel system with nonlinear sensitivity. Discrete and Continuous Dynamical Systems - B, 2017, 22 (4) : 1635-1644. doi: 10.3934/dcdsb.2017078

[15]

Hao Yu, Wei Wang, Sining Zheng. Global boundedness of solutions to a Keller-Segel system with nonlinear sensitivity. Discrete and Continuous Dynamical Systems - B, 2016, 21 (4) : 1317-1327. doi: 10.3934/dcdsb.2016.21.1317

[16]

Qi Wang, Jingyue Yang, Feng Yu. Boundedness in logistic Keller-Segel models with nonlinear diffusion and sensitivity functions. Discrete and Continuous Dynamical Systems, 2017, 37 (9) : 5021-5036. doi: 10.3934/dcds.2017216

[17]

Masaaki Mizukami. Boundedness and asymptotic stability in a two-species chemotaxis-competition model with signal-dependent sensitivity. Discrete and Continuous Dynamical Systems - B, 2017, 22 (6) : 2301-2319. doi: 10.3934/dcdsb.2017097

[18]

Guoqiang Ren, Bin Liu. Global boundedness of solutions to a chemotaxis-fluid system with singular sensitivity and logistic source. Communications on Pure and Applied Analysis, 2020, 19 (7) : 3843-3883. doi: 10.3934/cpaa.2020170

[19]

Alexandre Montaru. Wellposedness and regularity for a degenerate parabolic equation arising in a model of chemotaxis with nonlinear sensitivity. Discrete and Continuous Dynamical Systems - B, 2014, 19 (1) : 231-256. doi: 10.3934/dcdsb.2014.19.231

[20]

Pan Zheng, Chunlai Mu, Xiaojun Song. On the boundedness and decay of solutions for a chemotaxis-haptotaxis system with nonlinear diffusion. Discrete and Continuous Dynamical Systems, 2016, 36 (3) : 1737-1757. doi: 10.3934/dcds.2016.36.1737

2020 Impact Factor: 1.327

Metrics

  • PDF downloads (139)
  • HTML views (0)
  • Cited by (17)

Other articles
by authors

[Back to Top]