\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Global dynamics in a higher-dimensional repulsion chemotaxis model with nonlinear sensitivity

Abstract Related Papers Cited by
  • This paper deals with the repulsion chemotaxis system $$ \left\{ \begin{array}{ll} u_t=\Delta u +\nabla \cdot (f(u)\nabla v), & x\in\Omega, \ t>0, \\ v_t=\Delta v +u-v, & x\in\Omega, \ t>0, \end{array} \right. $$ under homogeneous Neumann boundary conditions in a smooth bounded convex domain $\Omega\subset\mathbb{R}^n$ with $n\ge 3$, where $f(u)$ is the density-dependent chemotactic sensitivity function satisfying $$ f \in C^2([0, \infty)),      f(0)=0, 0 < f(u) \le K(u+1)^{\alpha}          for     all     u > 0 $$ with some $K>0$ and $\alpha>0$.
        It is proved that under the assumptions that $0\not\equiv u_0\in C^0(\bar{\Omega})$ and $v_0\in C^1(\bar{\Omega})$ are nonnegative and that $\alpha<\frac{4}{n+2}$, the classical solutions to the above system are uniformly-in-time bounded. Moreover, it is shown that for any given $(u_0, v_0)$, the corresponding solution $(u, v)$ converges to $(\bar{u}_0, \bar{u}_0)$ as time goes to infinity, where $\bar{u}_0 :=\frac{1}{\Omega} f_{\Omega} u_0$.
    Mathematics Subject Classification: Primary: 35A01, 35K51, 35K57, 35M33; Secondary: 35Q92, 92C17.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    N. D. Alikakos, $L^p$ bounds of solutions of reaction-diffusion equations, Comm. Partial Differential Equations, 4 (1979), 827-868.doi: 10.1080/03605307908820113.

    [2]

    D. G. Aronson, The porous medium equation. Nonlinear diffusion problems, Lect. 2nd 1985 Sess. C. I. M. E., Montecatini Terme/Italy 1985, Lect. Notes Math., 1224 (1986), 1-46.doi: 10.1007/BFb0072687.

    [3]

    M. Chuai, W. Zeng, X. Yang, V. Boychenko, J. A. Glazier and C. J. Weijer, Cell movement during chick primitive streak formation, Dev. Biol., 296 (2006), 137-149.doi: 10.1016/j.ydbio.2006.04.451.

    [4]

    T. Cieślak and P. Laurençot, Finite time blow-up for a one-dimensional quasilinear parabolic-parabolic chemotaxis system, Ann. Inst. H. Poincaré Anal. Non Linéaire, 27 (2010), 437-446.doi: 10.1016/j.anihpc.2009.11.016.

    [5]

    T. Cieślak, P. Laurençot and C. Morales-Rodrigo, Global existence and convergence to steady-states in a chemorepulsion system, Banach Center Publ., 81 (2008), Polish Acad. Sci., Warsaw, 105-117.doi: 10.4064/bc81-0-7.

    [6]

    A. Friedman, Partial Differential Equations, Holt, Rinehart & Winston, New York, 1969.

    [7]

    M. A. Gates, V. M. Coupe, E. M. Torres, R. A. Fricker-Gares and S. B. Dunnett, Saptially and temporally restricted chemoattractant and repulsive cues direct the formation of the nigro-sriatal circuit, Euro. J. Neuroscicen, 19 (2004), 831-844.

    [8]

    D. Gilbarg and N. S. Trudinger, Elliptic Partial Differential Equations of Second Order, Grundlehren der Mathematischen Wissenschaften, Vol. 224. Springer-Verlag, Berlin-New York, 1977.

    [9]

    D. Henry, Geometric Theory of Semilinear Parabolic Equations, Lecture Notes in Mathematics, 840. Springer-Verlag, Berlin-New York, 1981.

    [10]

    M. A. Herrero and J. L. L. Velázquez, A blow-up mechanism for a chemotaxis model, Ann. Sc. Norm. Super. Pisa Cl. Sci., 24 (1997), 633-683.

    [11]

    T. Hillen and K. Painter, A users' guide to PDE models for chemotaxis, J. Math. Biol., 58 (2009), 183-217.doi: 10.1007/s00285-008-0201-3.

    [12]

    D. Horstmann, From 1970 until present: the Keller-Segel model in chemotaxis and its consequences. I, Jahresber. Deutsch. Math.- Verien, 105 (2003), 103-165.

    [13]

    D. Horstmann and G. Wang, Blow-up in a chemotaxis model without symmetry assumptions, European J. Appl. Math., 12 (2001), 159-177.doi: 10.1017/S0956792501004363.

    [14]

    D. Horstmann and M. Winkler, Boundedness vs. blow-up in a chemotaxis system, J. Differential Equations, 215 (2005), 52-107.doi: 10.1016/j.jde.2004.10.022.

    [15]

    W. Jäger and S. Luckhaus, On explosions of solutions to a system of partial differential equations modelling chemotaxis, Trans. Amer. Math. Soc., 329 (1992), 819-824.doi: 10.2307/2153966.

    [16]

    E. F. Keller and L. A. Segel, Initiation of slime mold aggregation viewed as an instaility, J. Theor. Biol., 26 (1970), 399-415.doi: 10.1016/0022-5193(70)90092-5.

    [17]

    R. Kowalczyk and Z. Szymańska, On the global existence of solutions to an aggregation model, J. Math. Anal. Appl., 343 (2008), 379-398.doi: 10.1016/j.jmaa.2008.01.005.

    [18]

    P. L. Lions, Résolution de problèmes elliptiques quasilinéaires, Arch. Rational Mech. Anal., 74 (1980), 335-353.doi: 10.1007/BF00249679.

    [19]

    M. Luca, A. Chavez-Ross, L. Edelstein-Keshet and A. Mogilner, Chemotactic signalling, microglia, and alzheimer's disease senile plague: is there a connection? Bull. Math. Biol., 65 (2003), 673-730.

    [20]

    T. Nagai, Blow-up of nonradial solutions to parabolic-elliptic systems modelling chemotaxis in two-dimensional domains, J. of Inequal. & Appl., 6 (2001), 37-55.doi: 10.1155/S1025583401000042.

    [21]

    K. Painter and T. Hillen, Volume-filling and quorum-sensing in models for chemosensitive movement, Can. Appl. Math. Quart., 10 (2002), 501-543.

    [22]

    B. Perthame, C. Schmeiser, M. Tang and N. Vauchelet, Traveling plateaus for a hyperbolic Keller-Segel system with attraction and repulsion-existence and branching instabilities, Nonlinearity, 24 (2011), 1253-1270.doi: 10.1088/0951-7715/24/4/012.

    [23]

    Y. Tao and Z.A. Wang, Competing effects of attraction vs. repulsion in chemotaxis, Math. Models Methods Appl. Sci., 23 (2013), 1-36.doi: 10.1142/S0218202512500443.

    [24]

    Y. Tao and M. Winkler, Boundedness in a quasilinear parabolic-parabolic Keller-Segel system with subcritical sensitivity, J. Differential Equations, 252 (2012), 692-715.doi: 10.1016/j.jde.2011.08.019.

    [25]

    Y. Tao and M. Winkler, Eventual smoothness and stabilization of large-data solutions in three-dimensional chemotaxis system with consumption of chemoattractant, J. Differential Equations, 252 (2012), 2520-2534.doi: 10.1016/j.jde.2011.07.010.

    [26]

    Y. Tao and M. Winkler, Locally bounded global soutions in a three-dimensional chemotaxis-Stokes system with nonlinear diffusion, Ann. Inst. H. Poincaré, Analyse Non Linéaire, 30 (2013), 157-178.doi: 10.1016/j.anihpc.2012.07.002.

    [27]

    M. Winkler, A critical exponent in a degenerate parabolic equation, Math. Methods Appl. Sci., 25 (2002), 911-925.doi: 10.1002/mma.319.

    [28]

    M. Winkler, Aggregation vs. global diffusive behavior in the higher-dimensional Keller-Segel model, J. Differential Equations, 248 (2010), 2889-2905.doi: 10.1016/j.jde.2010.02.008.

    [29]

    M. Winkler, Finite-time blow-up in the higher-dimensional parabolic-parabolic Keller-Segel system, J. Math. Pures Appl., 99 (2013).doi: 10.1016/j.matpur.2013.01.020.

  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(167) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return