
Previous Article
Galerkin finite element methods for semilinear elliptic differential inclusions
 DCDSB Home
 This Issue

Next Article
Preface
Modelling of wheatflour dough mixing as an openloop hysteretic process
1.  CSIRO Mathematics, Informatics and Statistics, North Road, ANU Campus, Acton ACT, GPO Box 664, Canberra, ACT 2601, Australia 
2.  Institute of Information Theory and Automation of the ASCR, Pod vodárenskou věží 4, 182 08 Prague, Czech Republic 
References:
[1] 
R. S. Anderssen and P. W. Gras, The hysteretic behaviour of wheatflour dough during mixing, in "Wheat Gluten" (eds. P. R Schewry and A. S. Tatham), Royal Society of Chemistry Special Publications, (2000), 391395. 
[2] 
R. S. Anderssen, I. G. Gotz and K. H. Hoffmann, The global behavior of elastoplastic and viscoelastic materials with hysteresistype state equations, SIAM J. Appl. Math., 58 (1998), 703723. 
[3] 
R. S. Anderssen, P. W. Gras and F. MacRitchie, Linking mathematics to data from the testing of wheatflour dough, Chem. in Aust., 64 (1997), 35. 
[4] 
R. S. Anderssen, P. W. Gras and F. MacRitchie, The rateindependence of the mixing of wheatflour dough to peak dough development, J. Cereal Sci., 27 (1998), 167177. 
[5] 
B. Appelbe, D. Flynn, H. McNamara,P. O'Kane, A. Pimenov, A. Pokrovskii, D. Rachinskii and A. Zhezherun, Rateindependent hysteresis in terrestrial hydrologya vegetated soil model with preisach hysteresis, IEEE Control Syst. Mag., 29 (2009), 4469. doi: 10.1109/MCS.2008.930923. 
[6] 
J. M. Ball, Convexity conditions and existence theorems in nonlinear elasticity, Arch. Rat. Mech. Anal., 63 (1977), 337403. 
[7] 
Z. P. Bažant and M. Jirásek, Nonlocal integral formulation of plasticity and damage: A survey of progress, J. Engrg. Mech., 128 (2002), 11191149. doi: 10.1061/(ASCE)07339399(2002)128:11(1119). 
[8] 
C. Carstensen, K. Hackl and A. Mielke, Nonconvex potentials and microstructures in finitestrain plasticity, Proc. Roy. Soc. Lond. A, 458 (2002), 299317. doi: 10.1098/rspa.2001.0864. 
[9] 
M. N. Charalambides, L. Wanigasooriya and J. G. Williams, Biaxial deformation of dough using the bubble inflation technique. II. Numerical modelling, Rheol. Acta, 41 (2002), 541548. 
[10] 
P. G. Ciarlet and J. Ne\vcas, Injectivity and selfcontact in nonlinear elasticity, Arch. Ration. Mech. Anal., 19 (1987), 171188. 
[11] 
G. Francfort and A. Mielke, Existence results for a class of rateindependent material models with nonconvex elastic energies, J. reine angew. Math., 595 (2006), 5591. 
[12] 
P. W. Gras, H. C. Carpenter and R. S. Anderssen, Modelling the developmental rheology of wheatflour dough using extension tests, J. Cereal Sci., 31 (2000), 113. doi: 10.1006/jcrs.1999.0293. 
[13] 
M. E. Gurtin, On the plasticity of single crystals: Free energy, microforces, plasticstrain gradients, J. Mech. Phys. Solids, 48 (2000), 9891036. doi: 10.1016/S00225096(99)000599. 
[14] 
R. H. Kilborn and K. H. Tipples, Factors affecting mechanical dough development 1. Effect of mixing intensity and work input, Cereal Chem., 49 (1972), 3447. 
[15] 
J. Kratochvíl, M. Kružík and R. Sedláček, Energetic approach to strain gradient plasticity, Zeit. Angew. Math. Mech., 90 (2010), 122135. 
[16] 
M. Kružík and J. Zimmer, A model of shape memory alloys accounting for plasticity, IMA J. Appl. Math., 76 (2011), 193216. 
[17] 
A. Mainik and A. Mielke, Existence results for energetic models for rateindependent systems, Calc. Var. Partial Differential Equations, 22 (2005), 7399. 
[18] 
A. Mainik and A. Mielke, Global existence for rateindependent gradient plasticity at finite strain, J. Nonlinear Sci., 19 (2009). 
[19] 
A. Mielke, Energetic formulation of multiplicative elastoplasticity using dissipation distances., Cont. Mech. Thermodyn., 15 (2002), 351382. 
[20] 
A. Mielke, Evolution of rateindependent systems, in "Evolutionary equations, II, Handb. Differ. Equ.,'' Elsevier/NorthHolland, Amsterdam, (2005), 461559. 
[21] 
A. Mielke and T. Roubíček, A rateindependent model for inelastic behavior of shapememory alloys, Multiscale Model. Simul., 1 (2003), 571597. doi: 10.1137/S1540345903422860. 
[22] 
A. Mielke and T. Roubíček, Numerical approaches to rateindependent processes and applications in inelasticity, ESAIM Math. Mod. Num. Anal., 43 (2009), 399428. doi: 10.1051/m2an/2009009. 
[23] 
A. Mielke and F. Theil, A mathematical model for rateindependent phase transformations with hysteresis, in "Models of Continuum Mechanics in Analysis and Engineering'' (eds. H.D.Alder, R. Balean and R. Farwig), Shaker Verlag, Aachen, (1999), 117129. 
[24] 
A. Mielke, F. Theil and V. I. Levitas, A variational formulation of rateindependent phase transformations using an extremum principle, Arch. Ration. Mech. Anal., 162 (2002), 137177. 
[25] 
T. S. K. Ng, G. H. McKinley and M. Padmanabhan, Linear to nonlinear rheology of wheat flour dough, Applied Rheology, 16 (2006), 265274. 
[26] 
N. PhanThien, M. SafariArdi and A. MoralesPatino, Oscillatory and simple shear flows of a flourwater dough: A constitutive model, Rheol. Acta, 36 (1997), 3848. 
[27] 
I. Tsagrakis and E. C. Aifantis, Recent developments in gradient plasticity, J. Engrg. Mater. Tech., 124 (2002). 
show all references
References:
[1] 
R. S. Anderssen and P. W. Gras, The hysteretic behaviour of wheatflour dough during mixing, in "Wheat Gluten" (eds. P. R Schewry and A. S. Tatham), Royal Society of Chemistry Special Publications, (2000), 391395. 
[2] 
R. S. Anderssen, I. G. Gotz and K. H. Hoffmann, The global behavior of elastoplastic and viscoelastic materials with hysteresistype state equations, SIAM J. Appl. Math., 58 (1998), 703723. 
[3] 
R. S. Anderssen, P. W. Gras and F. MacRitchie, Linking mathematics to data from the testing of wheatflour dough, Chem. in Aust., 64 (1997), 35. 
[4] 
R. S. Anderssen, P. W. Gras and F. MacRitchie, The rateindependence of the mixing of wheatflour dough to peak dough development, J. Cereal Sci., 27 (1998), 167177. 
[5] 
B. Appelbe, D. Flynn, H. McNamara,P. O'Kane, A. Pimenov, A. Pokrovskii, D. Rachinskii and A. Zhezherun, Rateindependent hysteresis in terrestrial hydrologya vegetated soil model with preisach hysteresis, IEEE Control Syst. Mag., 29 (2009), 4469. doi: 10.1109/MCS.2008.930923. 
[6] 
J. M. Ball, Convexity conditions and existence theorems in nonlinear elasticity, Arch. Rat. Mech. Anal., 63 (1977), 337403. 
[7] 
Z. P. Bažant and M. Jirásek, Nonlocal integral formulation of plasticity and damage: A survey of progress, J. Engrg. Mech., 128 (2002), 11191149. doi: 10.1061/(ASCE)07339399(2002)128:11(1119). 
[8] 
C. Carstensen, K. Hackl and A. Mielke, Nonconvex potentials and microstructures in finitestrain plasticity, Proc. Roy. Soc. Lond. A, 458 (2002), 299317. doi: 10.1098/rspa.2001.0864. 
[9] 
M. N. Charalambides, L. Wanigasooriya and J. G. Williams, Biaxial deformation of dough using the bubble inflation technique. II. Numerical modelling, Rheol. Acta, 41 (2002), 541548. 
[10] 
P. G. Ciarlet and J. Ne\vcas, Injectivity and selfcontact in nonlinear elasticity, Arch. Ration. Mech. Anal., 19 (1987), 171188. 
[11] 
G. Francfort and A. Mielke, Existence results for a class of rateindependent material models with nonconvex elastic energies, J. reine angew. Math., 595 (2006), 5591. 
[12] 
P. W. Gras, H. C. Carpenter and R. S. Anderssen, Modelling the developmental rheology of wheatflour dough using extension tests, J. Cereal Sci., 31 (2000), 113. doi: 10.1006/jcrs.1999.0293. 
[13] 
M. E. Gurtin, On the plasticity of single crystals: Free energy, microforces, plasticstrain gradients, J. Mech. Phys. Solids, 48 (2000), 9891036. doi: 10.1016/S00225096(99)000599. 
[14] 
R. H. Kilborn and K. H. Tipples, Factors affecting mechanical dough development 1. Effect of mixing intensity and work input, Cereal Chem., 49 (1972), 3447. 
[15] 
J. Kratochvíl, M. Kružík and R. Sedláček, Energetic approach to strain gradient plasticity, Zeit. Angew. Math. Mech., 90 (2010), 122135. 
[16] 
M. Kružík and J. Zimmer, A model of shape memory alloys accounting for plasticity, IMA J. Appl. Math., 76 (2011), 193216. 
[17] 
A. Mainik and A. Mielke, Existence results for energetic models for rateindependent systems, Calc. Var. Partial Differential Equations, 22 (2005), 7399. 
[18] 
A. Mainik and A. Mielke, Global existence for rateindependent gradient plasticity at finite strain, J. Nonlinear Sci., 19 (2009). 
[19] 
A. Mielke, Energetic formulation of multiplicative elastoplasticity using dissipation distances., Cont. Mech. Thermodyn., 15 (2002), 351382. 
[20] 
A. Mielke, Evolution of rateindependent systems, in "Evolutionary equations, II, Handb. Differ. Equ.,'' Elsevier/NorthHolland, Amsterdam, (2005), 461559. 
[21] 
A. Mielke and T. Roubíček, A rateindependent model for inelastic behavior of shapememory alloys, Multiscale Model. Simul., 1 (2003), 571597. doi: 10.1137/S1540345903422860. 
[22] 
A. Mielke and T. Roubíček, Numerical approaches to rateindependent processes and applications in inelasticity, ESAIM Math. Mod. Num. Anal., 43 (2009), 399428. doi: 10.1051/m2an/2009009. 
[23] 
A. Mielke and F. Theil, A mathematical model for rateindependent phase transformations with hysteresis, in "Models of Continuum Mechanics in Analysis and Engineering'' (eds. H.D.Alder, R. Balean and R. Farwig), Shaker Verlag, Aachen, (1999), 117129. 
[24] 
A. Mielke, F. Theil and V. I. Levitas, A variational formulation of rateindependent phase transformations using an extremum principle, Arch. Ration. Mech. Anal., 162 (2002), 137177. 
[25] 
T. S. K. Ng, G. H. McKinley and M. Padmanabhan, Linear to nonlinear rheology of wheat flour dough, Applied Rheology, 16 (2006), 265274. 
[26] 
N. PhanThien, M. SafariArdi and A. MoralesPatino, Oscillatory and simple shear flows of a flourwater dough: A constitutive model, Rheol. Acta, 36 (1997), 3848. 
[27] 
I. Tsagrakis and E. C. Aifantis, Recent developments in gradient plasticity, J. Engrg. Mater. Tech., 124 (2002). 
[1] 
Martin Heida, Alexander Mielke. Averaging of timeperiodic dissipation potentials in rateindependent processes. Discrete and Continuous Dynamical Systems  S, 2017, 10 (6) : 13031327. doi: 10.3934/dcdss.2017070 
[2] 
Alexander Mielke, Riccarda Rossi, Giuseppe Savaré. Modeling solutions with jumps for rateindependent systems on metric spaces. Discrete and Continuous Dynamical Systems, 2009, 25 (2) : 585615. doi: 10.3934/dcds.2009.25.585 
[3] 
Riccarda Rossi, Ulisse Stefanelli, Marita Thomas. Rateindependent evolution of sets. Discrete and Continuous Dynamical Systems  S, 2021, 14 (1) : 89119. doi: 10.3934/dcdss.2020304 
[4] 
Gianni Dal Maso, Alexander Mielke, Ulisse Stefanelli. Preface: Rateindependent evolutions. Discrete and Continuous Dynamical Systems  S, 2013, 6 (1) : iii. doi: 10.3934/dcdss.2013.6.1i 
[5] 
T. J. Sullivan, M. Koslowski, F. Theil, Michael Ortiz. Thermalization of rateindependent processes by entropic regularization. Discrete and Continuous Dynamical Systems  S, 2013, 6 (1) : 215233. doi: 10.3934/dcdss.2013.6.215 
[6] 
Augusto Visintin. Structural stability of rateindependent nonpotential flows. Discrete and Continuous Dynamical Systems  S, 2013, 6 (1) : 257275. doi: 10.3934/dcdss.2013.6.257 
[7] 
Dorothee Knees, Chiara Zanini. Existence of parameterized BVsolutions for rateindependent systems with discontinuous loads. Discrete and Continuous Dynamical Systems  S, 2021, 14 (1) : 121149. doi: 10.3934/dcdss.2020332 
[8] 
Riccarda Rossi, Giuseppe Savaré. A characterization of energetic and $BV$ solutions to onedimensional rateindependent systems. Discrete and Continuous Dynamical Systems  S, 2013, 6 (1) : 167191. doi: 10.3934/dcdss.2013.6.167 
[9] 
Daniele Davino, Ciro Visone. Rateindependent memory in magnetoelastic materials. Discrete and Continuous Dynamical Systems  S, 2015, 8 (4) : 649691. doi: 10.3934/dcdss.2015.8.649 
[10] 
Ulisse Stefanelli, Daniel Wachsmuth, Gerd Wachsmuth. Optimal control of a rateindependent evolution equation via viscous regularization. Discrete and Continuous Dynamical Systems  S, 2017, 10 (6) : 14671485. doi: 10.3934/dcdss.2017076 
[11] 
Michela Eleuteri, Luca Lussardi, Ulisse Stefanelli. A rateindependent model for permanent inelastic effects in shape memory materials. Networks and Heterogeneous Media, 2011, 6 (1) : 145165. doi: 10.3934/nhm.2011.6.145 
[12] 
Stefano Bosia, Michela Eleuteri, Elisabetta Rocca, Enrico Valdinoci. Preface: Special issue on rateindependent evolutions and hysteresis modelling. Discrete and Continuous Dynamical Systems  S, 2015, 8 (4) : ii. doi: 10.3934/dcdss.2015.8.4i 
[13] 
Luca Minotti. ViscoEnergetic solutions to onedimensional rateindependent problems. Discrete and Continuous Dynamical Systems, 2017, 37 (11) : 58835912. doi: 10.3934/dcds.2017256 
[14] 
Alice Fiaschi. Rateindependent phase transitions in elastic materials: A Youngmeasure approach. Networks and Heterogeneous Media, 2010, 5 (2) : 257298. doi: 10.3934/nhm.2010.5.257 
[15] 
Martin Kružík, Johannes Zimmer. Rateindependent processes with linear growth energies and timedependent boundary conditions. Discrete and Continuous Dynamical Systems  S, 2012, 5 (3) : 591604. doi: 10.3934/dcdss.2012.5.591 
[16] 
Michela Eleuteri, Luca Lussardi. Thermal control of a rateindependent model for permanent inelastic effects in shape memory materials. Evolution Equations and Control Theory, 2014, 3 (3) : 411427. doi: 10.3934/eect.2014.3.411 
[17] 
Benoît Saussol. Recurrence rate in rapidly mixing dynamical systems. Discrete and Continuous Dynamical Systems, 2006, 15 (1) : 259267. doi: 10.3934/dcds.2006.15.259 
[18] 
Martin Brokate, Pavel Krejčí. Optimal control of ODE systems involving a rate independent variational inequality. Discrete and Continuous Dynamical Systems  B, 2013, 18 (2) : 331348. doi: 10.3934/dcdsb.2013.18.331 
[19] 
M. A. Efendiev. On the compactness of the stable set for rate independent processes. Communications on Pure and Applied Analysis, 2003, 2 (4) : 495509. doi: 10.3934/cpaa.2003.2.495 
[20] 
Ian Melbourne, Dalia Terhesiu. Mixing properties for toral extensions of slowly mixing dynamical systems with finite and infinite measure. Journal of Modern Dynamics, 2018, 12: 285313. doi: 10.3934/jmd.2018011 
2020 Impact Factor: 1.327
Tools
Metrics
Other articles
by authors
[Back to Top]