-
Previous Article
Optimal control of ODE systems involving a rate independent variational inequality
- DCDS-B Home
- This Issue
-
Next Article
Galerkin finite element methods for semilinear elliptic differential inclusions
Emergence of collective behavior in dynamical networks
1. | Russian Academy of Sci., Inst. for Information Transm. Problems, and Higher School of Economics, Moscow, Russian Federation |
References:
[1] |
M. Blank, "Discreteness and Continuity in Problems of Chaotic Dynamics," American Mathematical Society, Providence, RI, 1997. xiv+161 pp. |
[2] |
M. Blank, Generalized phase transitions in finite coupled map lattices, Physica D, 103 (1997), 34-50. |
[3] |
M. Blank, Perron-Frobenius spectrum for random maps and its approximation, Moscow Math. J., 1 (2001), 315-344. |
[4] |
M. Blank, On raw coding of chaotic dynamics, Problems of Information Transmission, 42 (2006), 64-68.
doi: math.DS/0603575. |
[5] |
M. Blank, Self-consistent mappings and systems of interacting particles, Doklady Akademii Nauk (Russia), 436 (2011), 295-298. |
[6] |
M. Blank and L. Bunimovich, Multicomponent dynamical systems: SRB measures and phase transitions, Nonlinearity, 16 (2003), 387-401.
doi: math.DS/0202200][10.1088/0951-7715/16/1/322. |
[7] |
M. Blank, G. Keller and C. Liverani, Ruelle-Perron-Frobenius spectrum for Anosov maps, Nonlinearity, 15 (2002), 1905-1973. |
[8] |
J. Bricmont and A. Kupiainen, High temperature expansions and dynamical systems, Comm. Math. Phys., 178 (1996), 703-732. |
[9] |
L. A. Bunimovich and E. A. Carlen, On the problem of stability in lattice dynamical systems, J. Diff. Eq., 123 (1995), 213-219. |
[10] |
L. A. Bunimovich and Ya. G. Sinai, Spacetime chaos in coupled map lattices, Nonlinearity, 1 (1988), 491-516. |
[11] |
L. Bunimovich, Coupled map lattices: At the age of maturity, Lect. Notes in Physics, (eds. J-R.Chazottes and B.Fernandez) 671 (2005), 9-32. |
[12] |
G. Keller and C. Liverani, A spectral gap for a one-dimensional lattice of coupled piecewise expanding interval maps, Lecture Notes in Physics (Springer), 671 (2005), 115-151 |
[13] |
I. P. Cornfeld, Ya. G. Sinai and S. V. Fomin, "Ergodic Theory," New York: Springer, 1982. |
[14] |
T. M. Liggett, "Interacting Particle Systems," Springer, 2005. |
[15] |
A. Pikovsky, M. Rosenblum and J. Kurths, "Synchronization: A Universal Concept in Nonlinear Sciences," Cambridge Univ. Press, 2001. |
[16] |
Wenlian Lu, Fatihcan M. Atay and Jurgen Jost, Synchronization of discrete-time dynamical networks with time-varying couplings, SIAM J. on Mathematical Analysis, 39 (2007), 1231-1259. \arXiv:0812.2706. [math.DS math.PR] |
[17] |
Wu Chai Wah, Synchronization in networks of nonlinear dynamical systems coupled via a directed graph, Nonlinearity 18 (2005), 1057-1064.
doi: 10.1088/0951-7715/18/3/007. |
show all references
References:
[1] |
M. Blank, "Discreteness and Continuity in Problems of Chaotic Dynamics," American Mathematical Society, Providence, RI, 1997. xiv+161 pp. |
[2] |
M. Blank, Generalized phase transitions in finite coupled map lattices, Physica D, 103 (1997), 34-50. |
[3] |
M. Blank, Perron-Frobenius spectrum for random maps and its approximation, Moscow Math. J., 1 (2001), 315-344. |
[4] |
M. Blank, On raw coding of chaotic dynamics, Problems of Information Transmission, 42 (2006), 64-68.
doi: math.DS/0603575. |
[5] |
M. Blank, Self-consistent mappings and systems of interacting particles, Doklady Akademii Nauk (Russia), 436 (2011), 295-298. |
[6] |
M. Blank and L. Bunimovich, Multicomponent dynamical systems: SRB measures and phase transitions, Nonlinearity, 16 (2003), 387-401.
doi: math.DS/0202200][10.1088/0951-7715/16/1/322. |
[7] |
M. Blank, G. Keller and C. Liverani, Ruelle-Perron-Frobenius spectrum for Anosov maps, Nonlinearity, 15 (2002), 1905-1973. |
[8] |
J. Bricmont and A. Kupiainen, High temperature expansions and dynamical systems, Comm. Math. Phys., 178 (1996), 703-732. |
[9] |
L. A. Bunimovich and E. A. Carlen, On the problem of stability in lattice dynamical systems, J. Diff. Eq., 123 (1995), 213-219. |
[10] |
L. A. Bunimovich and Ya. G. Sinai, Spacetime chaos in coupled map lattices, Nonlinearity, 1 (1988), 491-516. |
[11] |
L. Bunimovich, Coupled map lattices: At the age of maturity, Lect. Notes in Physics, (eds. J-R.Chazottes and B.Fernandez) 671 (2005), 9-32. |
[12] |
G. Keller and C. Liverani, A spectral gap for a one-dimensional lattice of coupled piecewise expanding interval maps, Lecture Notes in Physics (Springer), 671 (2005), 115-151 |
[13] |
I. P. Cornfeld, Ya. G. Sinai and S. V. Fomin, "Ergodic Theory," New York: Springer, 1982. |
[14] |
T. M. Liggett, "Interacting Particle Systems," Springer, 2005. |
[15] |
A. Pikovsky, M. Rosenblum and J. Kurths, "Synchronization: A Universal Concept in Nonlinear Sciences," Cambridge Univ. Press, 2001. |
[16] |
Wenlian Lu, Fatihcan M. Atay and Jurgen Jost, Synchronization of discrete-time dynamical networks with time-varying couplings, SIAM J. on Mathematical Analysis, 39 (2007), 1231-1259. \arXiv:0812.2706. [math.DS math.PR] |
[17] |
Wu Chai Wah, Synchronization in networks of nonlinear dynamical systems coupled via a directed graph, Nonlinearity 18 (2005), 1057-1064.
doi: 10.1088/0951-7715/18/3/007. |
[1] |
V. Afraimovich, J. Schmeling, Edgardo Ugalde, Jesús Urías. Spectra of dimensions for Poincaré recurrences. Discrete and Continuous Dynamical Systems, 2000, 6 (4) : 901-914. doi: 10.3934/dcds.2000.6.901 |
[2] |
B. Fernandez, E. Ugalde, J. Urías. Spectrum of dimensions for Poincaré recurrences of Markov maps. Discrete and Continuous Dynamical Systems, 2002, 8 (4) : 835-849. doi: 10.3934/dcds.2002.8.835 |
[3] |
Juan Wang, Xiaodan Zhang, Yun Zhao. Dimension estimates for arbitrary subsets of limit sets of a Markov construction and related multifractal analysis. Discrete and Continuous Dynamical Systems, 2014, 34 (5) : 2315-2332. doi: 10.3934/dcds.2014.34.2315 |
[4] |
Godofredo Iommi, Bartłomiej Skorulski. Multifractal analysis for the exponential family. Discrete and Continuous Dynamical Systems, 2006, 16 (4) : 857-869. doi: 10.3934/dcds.2006.16.857 |
[5] |
V. Afraimovich, Jean-René Chazottes, Benoît Saussol. Pointwise dimensions for Poincaré recurrences associated with maps and special flows. Discrete and Continuous Dynamical Systems, 2003, 9 (2) : 263-280. doi: 10.3934/dcds.2003.9.263 |
[6] |
Julien Barral, Yan-Hui Qu. On the higher-dimensional multifractal analysis. Discrete and Continuous Dynamical Systems, 2012, 32 (6) : 1977-1995. doi: 10.3934/dcds.2012.32.1977 |
[7] |
Mario Roy, Mariusz Urbański. Multifractal analysis for conformal graph directed Markov systems. Discrete and Continuous Dynamical Systems, 2009, 25 (2) : 627-650. doi: 10.3934/dcds.2009.25.627 |
[8] |
Zhihui Yuan. Multifractal analysis of random weak Gibbs measures. Discrete and Continuous Dynamical Systems, 2017, 37 (10) : 5367-5405. doi: 10.3934/dcds.2017234 |
[9] |
Luis Barreira. Dimension theory of flows: A survey. Discrete and Continuous Dynamical Systems - B, 2015, 20 (10) : 3345-3362. doi: 10.3934/dcdsb.2015.20.3345 |
[10] |
Luis Barreira, César Silva. Lyapunov exponents for continuous transformations and dimension theory. Discrete and Continuous Dynamical Systems, 2005, 13 (2) : 469-490. doi: 10.3934/dcds.2005.13.469 |
[11] |
Valentin Afraimovich, Jean-Rene Chazottes and Benoit Saussol. Local dimensions for Poincare recurrences. Electronic Research Announcements, 2000, 6: 64-74. |
[12] |
Yunping Wang, Ercai Chen, Xiaoyao Zhou. Mean dimension theory in symbolic dynamics for finitely generated amenable groups. Discrete and Continuous Dynamical Systems, 2022 doi: 10.3934/dcds.2022050 |
[13] |
Zied Douzi, Bilel Selmi. On the mutual singularity of multifractal measures. Electronic Research Archive, 2020, 28 (1) : 423-432. doi: 10.3934/era.2020024 |
[14] |
Mirela Domijan, Markus Kirkilionis. Graph theory and qualitative analysis of reaction networks. Networks and Heterogeneous Media, 2008, 3 (2) : 295-322. doi: 10.3934/nhm.2008.3.295 |
[15] |
Jean-Pierre Francoise, Claude Piquet. Global recurrences of multi-time scaled systems. Conference Publications, 2011, 2011 (Special) : 430-436. doi: 10.3934/proc.2011.2011.430 |
[16] |
Balázs Bárány, Michaƚ Rams, Ruxi Shi. On the multifractal spectrum of weighted Birkhoff averages. Discrete and Continuous Dynamical Systems, 2022, 42 (5) : 2461-2497. doi: 10.3934/dcds.2021199 |
[17] |
Jerrold E. Marsden, Alexey Tret'yakov. Factor analysis of nonlinear mappings: p-regularity theory. Communications on Pure and Applied Analysis, 2003, 2 (4) : 425-445. doi: 10.3934/cpaa.2003.2.425 |
[18] |
Lars Olsen. First return times: multifractal spectra and divergence points. Discrete and Continuous Dynamical Systems, 2004, 10 (3) : 635-656. doi: 10.3934/dcds.2004.10.635 |
[19] |
Imen Bhouri, Houssem Tlili. On the multifractal formalism for Bernoulli products of invertible matrices. Discrete and Continuous Dynamical Systems, 2009, 24 (4) : 1129-1145. doi: 10.3934/dcds.2009.24.1129 |
[20] |
Yangjian Sun, Changjian Liu. The Poincaré bifurcation of a SD oscillator. Discrete and Continuous Dynamical Systems - B, 2021, 26 (3) : 1565-1577. doi: 10.3934/dcdsb.2020173 |
2020 Impact Factor: 1.327
Tools
Metrics
Other articles
by authors
[Back to Top]