March  2013, 18(2): 313-329. doi: 10.3934/dcdsb.2013.18.313

Emergence of collective behavior in dynamical networks

1. 

Russian Academy of Sci., Inst. for Information Transm. Problems, and Higher School of Economics, Moscow, Russian Federation

Received  August 2011 Revised  April 2012 Published  November 2012

One of the main paradigms of the theory of weakly interacting chaotic systems is the absence of phase transitions in generic situation. We propose a new type of multicomponent systems demonstrating in the weak interaction limit both collective and independent behavior of local components depending on fine properties of the interaction. The model under consideration is related to dynamical networks and sheds a new light to the problem of synchronization under weak interactions.
Citation: Michael Blank. Emergence of collective behavior in dynamical networks. Discrete and Continuous Dynamical Systems - B, 2013, 18 (2) : 313-329. doi: 10.3934/dcdsb.2013.18.313
References:
[1]

M. Blank, "Discreteness and Continuity in Problems of Chaotic Dynamics," American Mathematical Society, Providence, RI, 1997. xiv+161 pp.

[2]

M. Blank, Generalized phase transitions in finite coupled map lattices, Physica D, 103 (1997), 34-50.

[3]

M. Blank, Perron-Frobenius spectrum for random maps and its approximation, Moscow Math. J., 1 (2001), 315-344.

[4]

M. Blank, On raw coding of chaotic dynamics, Problems of Information Transmission, 42 (2006), 64-68. doi: math.DS/0603575.

[5]

M. Blank, Self-consistent mappings and systems of interacting particles, Doklady Akademii Nauk (Russia), 436 (2011), 295-298.

[6]

M. Blank and L. Bunimovich, Multicomponent dynamical systems: SRB measures and phase transitions, Nonlinearity, 16 (2003), 387-401. doi: math.DS/0202200][10.1088/0951-7715/16/1/322.

[7]

M. Blank, G. Keller and C. Liverani, Ruelle-Perron-Frobenius spectrum for Anosov maps, Nonlinearity, 15 (2002), 1905-1973.

[8]

J. Bricmont and A. Kupiainen, High temperature expansions and dynamical systems, Comm. Math. Phys., 178 (1996), 703-732.

[9]

L. A. Bunimovich and E. A. Carlen, On the problem of stability in lattice dynamical systems, J. Diff. Eq., 123 (1995), 213-219.

[10]

L. A. Bunimovich and Ya. G. Sinai, Spacetime chaos in coupled map lattices, Nonlinearity, 1 (1988), 491-516.

[11]

L. Bunimovich, Coupled map lattices: At the age of maturity, Lect. Notes in Physics, (eds. J-R.Chazottes and B.Fernandez) 671 (2005), 9-32.

[12]

G. Keller and C. Liverani, A spectral gap for a one-dimensional lattice of coupled piecewise expanding interval maps, Lecture Notes in Physics (Springer), 671 (2005), 115-151

[13]

I. P. Cornfeld, Ya. G. Sinai and S. V. Fomin, "Ergodic Theory," New York: Springer, 1982.

[14]

T. M. Liggett, "Interacting Particle Systems," Springer, 2005.

[15]

A. Pikovsky, M. Rosenblum and J. Kurths, "Synchronization: A Universal Concept in Nonlinear Sciences," Cambridge Univ. Press, 2001.

[16]

Wenlian Lu, Fatihcan M. Atay and Jurgen Jost, Synchronization of discrete-time dynamical networks with time-varying couplings, SIAM J. on Mathematical Analysis, 39 (2007), 1231-1259. \arXiv:0812.2706. [math.DS math.PR]

[17]

Wu Chai Wah, Synchronization in networks of nonlinear dynamical systems coupled via a directed graph, Nonlinearity 18 (2005), 1057-1064. doi: 10.1088/0951-7715/18/3/007.

show all references

References:
[1]

M. Blank, "Discreteness and Continuity in Problems of Chaotic Dynamics," American Mathematical Society, Providence, RI, 1997. xiv+161 pp.

[2]

M. Blank, Generalized phase transitions in finite coupled map lattices, Physica D, 103 (1997), 34-50.

[3]

M. Blank, Perron-Frobenius spectrum for random maps and its approximation, Moscow Math. J., 1 (2001), 315-344.

[4]

M. Blank, On raw coding of chaotic dynamics, Problems of Information Transmission, 42 (2006), 64-68. doi: math.DS/0603575.

[5]

M. Blank, Self-consistent mappings and systems of interacting particles, Doklady Akademii Nauk (Russia), 436 (2011), 295-298.

[6]

M. Blank and L. Bunimovich, Multicomponent dynamical systems: SRB measures and phase transitions, Nonlinearity, 16 (2003), 387-401. doi: math.DS/0202200][10.1088/0951-7715/16/1/322.

[7]

M. Blank, G. Keller and C. Liverani, Ruelle-Perron-Frobenius spectrum for Anosov maps, Nonlinearity, 15 (2002), 1905-1973.

[8]

J. Bricmont and A. Kupiainen, High temperature expansions and dynamical systems, Comm. Math. Phys., 178 (1996), 703-732.

[9]

L. A. Bunimovich and E. A. Carlen, On the problem of stability in lattice dynamical systems, J. Diff. Eq., 123 (1995), 213-219.

[10]

L. A. Bunimovich and Ya. G. Sinai, Spacetime chaos in coupled map lattices, Nonlinearity, 1 (1988), 491-516.

[11]

L. Bunimovich, Coupled map lattices: At the age of maturity, Lect. Notes in Physics, (eds. J-R.Chazottes and B.Fernandez) 671 (2005), 9-32.

[12]

G. Keller and C. Liverani, A spectral gap for a one-dimensional lattice of coupled piecewise expanding interval maps, Lecture Notes in Physics (Springer), 671 (2005), 115-151

[13]

I. P. Cornfeld, Ya. G. Sinai and S. V. Fomin, "Ergodic Theory," New York: Springer, 1982.

[14]

T. M. Liggett, "Interacting Particle Systems," Springer, 2005.

[15]

A. Pikovsky, M. Rosenblum and J. Kurths, "Synchronization: A Universal Concept in Nonlinear Sciences," Cambridge Univ. Press, 2001.

[16]

Wenlian Lu, Fatihcan M. Atay and Jurgen Jost, Synchronization of discrete-time dynamical networks with time-varying couplings, SIAM J. on Mathematical Analysis, 39 (2007), 1231-1259. \arXiv:0812.2706. [math.DS math.PR]

[17]

Wu Chai Wah, Synchronization in networks of nonlinear dynamical systems coupled via a directed graph, Nonlinearity 18 (2005), 1057-1064. doi: 10.1088/0951-7715/18/3/007.

[1]

V. Afraimovich, J. Schmeling, Edgardo Ugalde, Jesús Urías. Spectra of dimensions for Poincaré recurrences. Discrete and Continuous Dynamical Systems, 2000, 6 (4) : 901-914. doi: 10.3934/dcds.2000.6.901

[2]

B. Fernandez, E. Ugalde, J. Urías. Spectrum of dimensions for Poincaré recurrences of Markov maps. Discrete and Continuous Dynamical Systems, 2002, 8 (4) : 835-849. doi: 10.3934/dcds.2002.8.835

[3]

Juan Wang, Xiaodan Zhang, Yun Zhao. Dimension estimates for arbitrary subsets of limit sets of a Markov construction and related multifractal analysis. Discrete and Continuous Dynamical Systems, 2014, 34 (5) : 2315-2332. doi: 10.3934/dcds.2014.34.2315

[4]

Godofredo Iommi, Bartłomiej Skorulski. Multifractal analysis for the exponential family. Discrete and Continuous Dynamical Systems, 2006, 16 (4) : 857-869. doi: 10.3934/dcds.2006.16.857

[5]

V. Afraimovich, Jean-René Chazottes, Benoît Saussol. Pointwise dimensions for Poincaré recurrences associated with maps and special flows. Discrete and Continuous Dynamical Systems, 2003, 9 (2) : 263-280. doi: 10.3934/dcds.2003.9.263

[6]

Julien Barral, Yan-Hui Qu. On the higher-dimensional multifractal analysis. Discrete and Continuous Dynamical Systems, 2012, 32 (6) : 1977-1995. doi: 10.3934/dcds.2012.32.1977

[7]

Mario Roy, Mariusz Urbański. Multifractal analysis for conformal graph directed Markov systems. Discrete and Continuous Dynamical Systems, 2009, 25 (2) : 627-650. doi: 10.3934/dcds.2009.25.627

[8]

Zhihui Yuan. Multifractal analysis of random weak Gibbs measures. Discrete and Continuous Dynamical Systems, 2017, 37 (10) : 5367-5405. doi: 10.3934/dcds.2017234

[9]

Luis Barreira. Dimension theory of flows: A survey. Discrete and Continuous Dynamical Systems - B, 2015, 20 (10) : 3345-3362. doi: 10.3934/dcdsb.2015.20.3345

[10]

Luis Barreira, César Silva. Lyapunov exponents for continuous transformations and dimension theory. Discrete and Continuous Dynamical Systems, 2005, 13 (2) : 469-490. doi: 10.3934/dcds.2005.13.469

[11]

Valentin Afraimovich, Jean-Rene Chazottes and Benoit Saussol. Local dimensions for Poincare recurrences. Electronic Research Announcements, 2000, 6: 64-74.

[12]

Yunping Wang, Ercai Chen, Xiaoyao Zhou. Mean dimension theory in symbolic dynamics for finitely generated amenable groups. Discrete and Continuous Dynamical Systems, 2022  doi: 10.3934/dcds.2022050

[13]

Zied Douzi, Bilel Selmi. On the mutual singularity of multifractal measures. Electronic Research Archive, 2020, 28 (1) : 423-432. doi: 10.3934/era.2020024

[14]

Mirela Domijan, Markus Kirkilionis. Graph theory and qualitative analysis of reaction networks. Networks and Heterogeneous Media, 2008, 3 (2) : 295-322. doi: 10.3934/nhm.2008.3.295

[15]

Jean-Pierre Francoise, Claude Piquet. Global recurrences of multi-time scaled systems. Conference Publications, 2011, 2011 (Special) : 430-436. doi: 10.3934/proc.2011.2011.430

[16]

Balázs Bárány, Michaƚ Rams, Ruxi Shi. On the multifractal spectrum of weighted Birkhoff averages. Discrete and Continuous Dynamical Systems, 2022, 42 (5) : 2461-2497. doi: 10.3934/dcds.2021199

[17]

Jerrold E. Marsden, Alexey Tret'yakov. Factor analysis of nonlinear mappings: p-regularity theory. Communications on Pure and Applied Analysis, 2003, 2 (4) : 425-445. doi: 10.3934/cpaa.2003.2.425

[18]

Lars Olsen. First return times: multifractal spectra and divergence points. Discrete and Continuous Dynamical Systems, 2004, 10 (3) : 635-656. doi: 10.3934/dcds.2004.10.635

[19]

Imen Bhouri, Houssem Tlili. On the multifractal formalism for Bernoulli products of invertible matrices. Discrete and Continuous Dynamical Systems, 2009, 24 (4) : 1129-1145. doi: 10.3934/dcds.2009.24.1129

[20]

Yangjian Sun, Changjian Liu. The Poincaré bifurcation of a SD oscillator. Discrete and Continuous Dynamical Systems - B, 2021, 26 (3) : 1565-1577. doi: 10.3934/dcdsb.2020173

2020 Impact Factor: 1.327

Metrics

  • PDF downloads (54)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]