\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Asymptotic behaviour of random tridiagonal Markov chains in biological applications

Abstract Related Papers Cited by
  • Discrete-time discrete-state random Markov chains with a tridiagonal generator are shown to have a random attractor consisting of singleton subsets, essentially a random path, in the simplex of probability vectors. The proof uses the Hilbert projection metric and the fact that the linear cocycle generated by the Markov chain is a uniformly contractive mapping of the positive cone into itself. The proof does not involve probabilistic properties of the sample path $\omega$ and is thus equally valid in the nonautonomous deterministic context of Markov chains with, say, periodically varying transitions probabilities, in which case the attractor is a periodic path.
    Mathematics Subject Classification: Primary: 15B48, 15B52, 37H10; Secondary: 15B51, 60J10, 92C99.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    L. J. S. Allen, "An Introduction to Stochastic Processes with Applications to Biology," CRC Press, Boca Raton, FL, second edn., 2011.

    [2]

    L. Arnold, "Random Synamical Systems," Springer Monographs in Mathematics, Springer-Verlag, Berlin, 1998.

    [3]

    E. Asarin, P. Diamond, I. Fomenko et al., Chaotic phenomena in desynchronized systems and stability analysis, Comput. Math. Appl., 25 (1993), 81-87, doi:10.1016/0898-1221(93)90214-G, URL http://www.sciencedirect.com/science/article/pii/089812219390214G.doi: 10.1016/0898-1221(93)90214-G.

    [4]

    J.-P. Aubin and H. Frankowska, "Set-valued Analysis," Modern Birkhäuser Classics, Birkhäuser Boston Inc., Boston, MA, 2009, reprint of the 1990 edition [MR1048347].

    [5]

    M. F. Barnsley, A. Vince and D. C. WilsonReal projective iterated function systems, ArXiv.org e-Print archive, arXiv:1003.3473.

    [6]

    P. J. Bushell, Hilbert's metric and positive contraction mappings in a Banach space, Arch. Rational Mech. Anal., 52 (1973), 330-338.

    [7]

    D. N. Cheban, P. E. Kloeden and B. Schmalfuß, The relationship between pullback, forward and global attractors of nonautonomous dynamical systems, Nonlinear Dyn. Syst. Theory, 2 (2002), 125-144.

    [8]

    I. Chueshov, "Monotone Random Systems Theory and Applications," 1779 of Lecture Notes in Mathematics, Springer-Verlag, Berlin, 2002.

    [9]

    I. Chueshov and M. Scheutzow, On the structure of attractors and invariant measures for a class of monotone random systems, Dyn. Syst., 19 (2004), 127-144. doi:10.1080/1468936042000207792, URL http://www.tandfonline.com/doi/abs/10.1080/1468936042000207792.doi: 10.1080/1468936042000207792.

    [10]

    H. Cohn, Products of stochastic matrices and applications, Internat. J. Math. Math. Sci., 12 (1989), 209-233. doi:10.1155/S0161171289000268, URL http://www.hindawi.com/journals/ijmms/1989/656040/abs/.doi: 10.1155/S0161171289000268.

    [11]

    D. J. Hartfiel, "Markov Set-Chains," 1695 of Lecture Notes in Mathematics, Springer-Verlag, Berlin, 1998.

    [12]

    D. J. Hartfiel, "Nonhomogeneous Matrix Products," World Scientific Publishing Co. Inc., River Edge, NJ, 2002.

    [13]

    A. E. Hutzenthaler, "Mathematical Models for Cell-Cell Coomunication on Different Time Scales," Ph.D. thesis, Zentrum Mathematik, Technische Universität München, 2009, URL http://deposit.ddb.de/cgi-bin/dokserv?idn=100332925x&dok_var=d1&dok_ext=pdf&filename=100332925x.pdf.

    [14]

    P. Imkeller and P. Kloeden, On the computation of invariant measures in random dynamical systems, Stoch. Dyn., 3 (2003), 247-265. doi:10.1142/S0219493703000711, URL http://www.worldscinet.com/sd/03/0302/S0219493703000711.html.doi: 10.1142/S0219493703000711.

    [15]

    P. E. Kloeden and M. Rasmussen, "Nonautonomous Dynamical Systems," 176 of Mathematical Surveys and Monographs, American Mathematical Society, Providence, RI, 2011.

    [16]

    M. A. Krasnosel$'$skij, J. A. Lifshits and A. V. Sobolev, "Positive Linear Systems," 5 of Sigma Series in Applied Mathematics, Heldermann Verlag, Berlin, 1989, The method of positive operators, Translated from the Russian by Jürgen Appell.

    [17]

    A. Leizarowitz, On infinite products of stochastic matrices, Linear Algebra Appl., 168 (1992), 189-219. http://dx.doi.org/10.1016/0024-3795(92)90294-K doi:10.1016/0024-3795(92)90294-K, URL http://www.sciencedirect.com/science/article/pii/002437959290294K.doi: 10.1016/0024-3795(92)90294-K.

    [18]

    M. Neumann and H. Schneider, The convergence of general products of matrices and the weak ergodicity of Markov chains, Linear Algebra Appl., 287 (1999), 307-314, http://dx.doi.org/10.1016/S0024-3795(98)10196-9 doi:10.1016/S0024-3795(98)10196-9, URL http://www.sciencedirect.com/science/article/pii/S0024379598101969, special issue celebrating the 60th birthday of Ludwig Elsner.doi: 10.1016/S0024-3795(98)10196-9.

    [19]

    B. Noble and J. W. Daniel, "Applied Linear Algebra," Prentice-Hall Inc., Englewood Cliffs, N. J., second edn., 1977.

    [20]

    B. S. Thomson, J. B. Bruckner and A. M. Bruckner, "Elementary Real Analysis," www.classicalrealanalysis.com, second edn., 2008.

    [21]

    D. Wodarz and N. Komarova, "Computational Biology of Cancer: Lecture Notes and Mathematical Modeling," World Scientific Publishing Co. Pte. Ltd., Singapore, 2005.

    [22]

    J. Wolfowitz, Products of indecomposable, aperiodic, stochastic matrices, Proc. Amer. Math. Soc., 14 (1963), 733-737.

  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(106) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return