March  2013, 18(2): 483-493. doi: 10.3934/dcdsb.2013.18.483

Periodic solutions of isotone hybrid systems

1. 

Department of Mathematics and Statistics, University of Maryland Baltimore County (UMBC), Baltimore, MD 21250, United States

2. 

Weierstrass Institute for Applied Analysis and Stochastics (WIAS), Mohrenstr. 39, 10117 Berlin, Germany

Received  December 2011 Revised  August 2012 Published  November 2012

Suggested by conversations in 1991 (Mark Krasnosel'skiĭ and Aleksei Pokrovskiĭ with TIS), this paper generalizes earlier work [7] of theirs by defining a setting of hybrid systems with isotone switching rules for a partially ordered set of modes and then obtaining a periodicity result in that context. An application is given to a partial differential equation modeling calcium release and diffusion in cardiac cells.
Citation: Thomas I. Seidman, Olaf Klein. Periodic solutions of isotone hybrid systems. Discrete and Continuous Dynamical Systems - B, 2013, 18 (2) : 483-493. doi: 10.3934/dcdsb.2013.18.483
References:
[1]

G. Birkhoff, "Lattice Theory," $2^{nd}$ rev. ed., Amer. Math. Soc. Colloq. Publ., 25 AMS, Providence, 1948.

[2]

A. Friedman and L.-S. Jiang, Periodic solutions for a thermostat control problem, Comm. PDE, 13 (1988), 515-550.

[3]

K. Glashoff and J. Sprekels, The regulation of temperature by thermostats and set-valued integral equations, J. Int. Eqns., 4 (1982), 95-112.

[4]

G. Gripenberg, On periodic solutions of a thermostat equation, SIAM J. Math. Anal., 18 (1987), 694-702.

[5]

F. Hante, G. Leugering and T. I. Seidman, An augmented BV setting for feedback switching control, J. Systems Sci. & Comp., 23 (2010), 456-466. doi: 10.1007/s11424-010-0140-0.

[6]

L. T. Izu, W. G. Wier, and C. W. Balke, Evolution of cardiac calcium waves from stochastic calcium sparks, Biophysical Journal, 80 (2001), 103-120. doi: 10.1016/S0006-3495(01)75998-X.

[7]

M. A. Krasnosel'skiĭ and A. V. Pokrovskiĭ, Periodic oscillations in systems with relay nonlinearities, (transl. from (MR0355210), DAN USSR, 216 (1974), 733-736). Soviet Math Doklady, 15 (1974), 873-877.

[8]

M. A. Krasnosel'skiĭ and A .V. Pokrovskiĭ, "Systems with Hysteresis," (transl. of "Sistemy s Gisterezisom'', Nauka, Moscow, 1983) Springer-Verlag, Berlin, 1989.

[9]

O. A. Ladyženskaja, V. A. Solonnikov and N. N. Ural'ceva, "Linear and Quasilinear Equations of Parabolic Type," Translations of Math. Monographs, vol. 23, Amer. Math. Soc., Providence, 1968.

[10]

T. I. Seidman, Switching systems: thermostats and periodicity, Report MRR-83-07, UMBC, 1983, Available from: http://www.math.umbc.edu/~seidman/papers.html

[11]

T. I. Seidman, Switching systems I, Control and Cybernetics, 19 (1990), 63-92.

[12]

T. I. Seidman, Switching systems and periodicity, in "Nonlinear Semigroups, PDE, and Attractors'' (eds. T. E. Gill and W. W. Zachary), LCM \#1394; Springer-Verlag, New York, (1989), 199-210.

[13]

B. Stoth, "Periodische Lösungen Von Linearen Thermostat Problemen," Diplomthesis: (Report SFB 256), Univ. Bonn, 1987.

[14]

W. Szczechla, "Periodicity for Certain Switching Systems," Ph.D thesis, UMBC, 1993.

show all references

References:
[1]

G. Birkhoff, "Lattice Theory," $2^{nd}$ rev. ed., Amer. Math. Soc. Colloq. Publ., 25 AMS, Providence, 1948.

[2]

A. Friedman and L.-S. Jiang, Periodic solutions for a thermostat control problem, Comm. PDE, 13 (1988), 515-550.

[3]

K. Glashoff and J. Sprekels, The regulation of temperature by thermostats and set-valued integral equations, J. Int. Eqns., 4 (1982), 95-112.

[4]

G. Gripenberg, On periodic solutions of a thermostat equation, SIAM J. Math. Anal., 18 (1987), 694-702.

[5]

F. Hante, G. Leugering and T. I. Seidman, An augmented BV setting for feedback switching control, J. Systems Sci. & Comp., 23 (2010), 456-466. doi: 10.1007/s11424-010-0140-0.

[6]

L. T. Izu, W. G. Wier, and C. W. Balke, Evolution of cardiac calcium waves from stochastic calcium sparks, Biophysical Journal, 80 (2001), 103-120. doi: 10.1016/S0006-3495(01)75998-X.

[7]

M. A. Krasnosel'skiĭ and A. V. Pokrovskiĭ, Periodic oscillations in systems with relay nonlinearities, (transl. from (MR0355210), DAN USSR, 216 (1974), 733-736). Soviet Math Doklady, 15 (1974), 873-877.

[8]

M. A. Krasnosel'skiĭ and A .V. Pokrovskiĭ, "Systems with Hysteresis," (transl. of "Sistemy s Gisterezisom'', Nauka, Moscow, 1983) Springer-Verlag, Berlin, 1989.

[9]

O. A. Ladyženskaja, V. A. Solonnikov and N. N. Ural'ceva, "Linear and Quasilinear Equations of Parabolic Type," Translations of Math. Monographs, vol. 23, Amer. Math. Soc., Providence, 1968.

[10]

T. I. Seidman, Switching systems: thermostats and periodicity, Report MRR-83-07, UMBC, 1983, Available from: http://www.math.umbc.edu/~seidman/papers.html

[11]

T. I. Seidman, Switching systems I, Control and Cybernetics, 19 (1990), 63-92.

[12]

T. I. Seidman, Switching systems and periodicity, in "Nonlinear Semigroups, PDE, and Attractors'' (eds. T. E. Gill and W. W. Zachary), LCM \#1394; Springer-Verlag, New York, (1989), 199-210.

[13]

B. Stoth, "Periodische Lösungen Von Linearen Thermostat Problemen," Diplomthesis: (Report SFB 256), Univ. Bonn, 1987.

[14]

W. Szczechla, "Periodicity for Certain Switching Systems," Ph.D thesis, UMBC, 1993.

[1]

Teck-Cheong Lim. On the largest common fixed point of a commuting family of isotone maps. Conference Publications, 2005, 2005 (Special) : 621-623. doi: 10.3934/proc.2005.2005.621

[2]

Silvia Sastre-Gomez. Equivalent formulations for steady periodic water waves of fixed mean-depth with discontinuous vorticity. Discrete and Continuous Dynamical Systems, 2017, 37 (5) : 2669-2680. doi: 10.3934/dcds.2017114

[3]

Sorin Micu, Ademir F. Pazoto. Almost periodic solutions for a weakly dissipated hybrid system. Mathematical Control and Related Fields, 2014, 4 (1) : 101-113. doi: 10.3934/mcrf.2014.4.101

[4]

Luca Dieci, Timo Eirola, Cinzia Elia. Periodic orbits of planar discontinuous system under discretization. Discrete and Continuous Dynamical Systems - B, 2018, 23 (7) : 2743-2762. doi: 10.3934/dcdsb.2018103

[5]

Adrian Constantin. Dispersion relations for periodic traveling water waves in flows with discontinuous vorticity. Communications on Pure and Applied Analysis, 2012, 11 (4) : 1397-1406. doi: 10.3934/cpaa.2012.11.1397

[6]

Calin Iulian Martin. Dispersion relations for periodic water waves with surface tension and discontinuous vorticity. Discrete and Continuous Dynamical Systems, 2014, 34 (8) : 3109-3123. doi: 10.3934/dcds.2014.34.3109

[7]

Bogdan Kazmierczak, Zbigniew Peradzynski. Calcium waves with mechano-chemical couplings. Mathematical Biosciences & Engineering, 2013, 10 (3) : 743-759. doi: 10.3934/mbe.2013.10.743

[8]

Jerry L. Bona, Thierry Colin, Colette Guillopé. Propagation of long-crested water waves. Ⅱ. Bore propagation. Discrete and Continuous Dynamical Systems, 2019, 39 (10) : 5543-5569. doi: 10.3934/dcds.2019244

[9]

Mohammad Eslamian, Ahmad Kamandi. A novel algorithm for approximating common solution of a system of monotone inclusion problems and common fixed point problem. Journal of Industrial and Management Optimization, 2021  doi: 10.3934/jimo.2021210

[10]

Calin Iulian Martin, Adrián Rodríguez-Sanjurjo. Dispersion relations for steady periodic water waves of fixed mean-depth with two rotational layers. Discrete and Continuous Dynamical Systems, 2019, 39 (9) : 5149-5169. doi: 10.3934/dcds.2019209

[11]

Nicholas Long. Fixed point shifts of inert involutions. Discrete and Continuous Dynamical Systems, 2009, 25 (4) : 1297-1317. doi: 10.3934/dcds.2009.25.1297

[12]

Zhihong Xia, Peizheng Yu. A fixed point theorem for twist maps. Discrete and Continuous Dynamical Systems, 2022, 42 (8) : 4051-4059. doi: 10.3934/dcds.2022045

[13]

Jerry L. Bona, Angel Durán, Dimitrios Mitsotakis. Solitary-wave solutions of Benjamin-Ono and other systems for internal waves. I. approximations. Discrete and Continuous Dynamical Systems, 2021, 41 (1) : 87-111. doi: 10.3934/dcds.2020215

[14]

Pavel Gurevich. Periodic solutions of parabolic problems with hysteresis on the boundary. Discrete and Continuous Dynamical Systems, 2011, 29 (3) : 1041-1083. doi: 10.3934/dcds.2011.29.1041

[15]

Hongyong Zhao, Daiyong Wu. Point to point traveling wave and periodic traveling wave induced by Hopf bifurcation for a diffusive predator-prey system. Discrete and Continuous Dynamical Systems - S, 2020, 13 (11) : 3271-3284. doi: 10.3934/dcdss.2020129

[16]

Fábio Natali, Ademir Pastor. Orbital stability of periodic waves for the Klein-Gordon-Schrödinger system. Discrete and Continuous Dynamical Systems, 2011, 31 (1) : 221-238. doi: 10.3934/dcds.2011.31.221

[17]

Yakov Krasnov, Alexander Kononovich, Grigory Osharovich. On a structure of the fixed point set of homogeneous maps. Discrete and Continuous Dynamical Systems - S, 2013, 6 (4) : 1017-1027. doi: 10.3934/dcdss.2013.6.1017

[18]

Jorge Groisman. Expansive and fixed point free homeomorphisms of the plane. Discrete and Continuous Dynamical Systems, 2012, 32 (5) : 1709-1721. doi: 10.3934/dcds.2012.32.1709

[19]

Yong Ji, Ercai Chen, Yunping Wang, Cao Zhao. Bowen entropy for fixed-point free flows. Discrete and Continuous Dynamical Systems, 2019, 39 (11) : 6231-6239. doi: 10.3934/dcds.2019271

[20]

Shui-Hung Hou. On an application of fixed point theorem to nonlinear inclusions. Conference Publications, 2011, 2011 (Special) : 692-697. doi: 10.3934/proc.2011.2011.692

2021 Impact Factor: 1.497

Metrics

  • PDF downloads (143)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]