
Previous Article
The monomerdimer problem and moment Lyapunov exponents of homogeneous Gaussian random fields
 DCDSB Home
 This Issue

Next Article
OhmHall conduction in hysteresisfree ferromagnetic processes
Equicontinuous sweeping processes
1.  Institute for Information Transmission Problems, Bolshoy Karetny per. 19, Moscow, 127994, Russian Federation 
References:
[1] 
P. Dupuis and H. Ishii, On Lipschitz continuity of the solution mapping to the Skorokhod problem with applications, Stoch. and Stoch. Rep., 35 (1991), 3162. 
[2] 
H. Frankowska, A viability approach to the Skorohod problem, Stochastics, 14 (1985), 227244. 
[3] 
J. Kelley, "General Topology," D. Van Nostrand Company, Inc., New York, 1957. 
[4] 
A. A. Vladimirov, A. F. Klepcyn, V. S. Kozyakin, M. A. Krasnosel'skii, E. A. Lifshitz and A. V. Pokrovskii, Vector hysteresis nonlinearities of von MisesTresca type (Russian), Dokl. Akad. Nauk SSSR, 257 (1981), 506509. 
[5] 
M. A. Krasnosel'skii and A. V. Pokrovskii, "Systems with Hysteresis," SpringerVerlag, Berlin, 1988. 
[6] 
P. Krejci, "Hysteresis, Convexity and Dissipation in Hyperbolic Equations," Gakkotosho, Tokyo, 1996. 
[7] 
P. Krejci and A. Vladimirov, Lipschitz continuity of polyhedral Skorokhod maps, J. Analysis Appl., 20 (2001), 817844. 
[8] 
P. Krejci and A. Vladimirov, Polyhedral sweeping processes with oblique reflection in the space of regulated functions, SetValued Anal., 11 (2003), 91110. doi: 10.1023/A:1021980201718. 
[9] 
M. Kunze and M. D. P. Monteiro Marques, An introduction to Moreau's sweeping process, in "Impacts in Mechanical Systems  Analysis and Modelling," 551 of Lecture Notes in Physics, Springer, BerlinNew York, (2000), 160. 
[10] 
M. D. P. Monteiro Marques, Rafle par un convexe semicontinue inferieurement d'interieur non vide en dimension finie, C.R.Acad.Sci, Paris, Ser. I, 229 (1984), 307310. 
[11] 
M. D. P. Monteiro Marques, "Differential Inclusions in Nonsmooth Mechanical Problems Shocks and Dry Friction," Birkhauser, Basel, 1993. 
[12] 
J. J. Moreau, Evolution problem associated with a moving convex set in a Hilbert space, Journ. of Dif. Eq., 20 (1997), 347374. 
[13] 
A. A. Vladimirov, Does continuity of convexvalued maps survive under intersection?, in "Optimization and Related Topics," Kluwer Acad. Publ., (2001), 415428. 
[14] 
A. A. Vladimirov and A. F. Kleptsyn, On some hysteresis elements (Russian), Avtomat. i Telemekh., 7 (1982), 165169. 
show all references
References:
[1] 
P. Dupuis and H. Ishii, On Lipschitz continuity of the solution mapping to the Skorokhod problem with applications, Stoch. and Stoch. Rep., 35 (1991), 3162. 
[2] 
H. Frankowska, A viability approach to the Skorohod problem, Stochastics, 14 (1985), 227244. 
[3] 
J. Kelley, "General Topology," D. Van Nostrand Company, Inc., New York, 1957. 
[4] 
A. A. Vladimirov, A. F. Klepcyn, V. S. Kozyakin, M. A. Krasnosel'skii, E. A. Lifshitz and A. V. Pokrovskii, Vector hysteresis nonlinearities of von MisesTresca type (Russian), Dokl. Akad. Nauk SSSR, 257 (1981), 506509. 
[5] 
M. A. Krasnosel'skii and A. V. Pokrovskii, "Systems with Hysteresis," SpringerVerlag, Berlin, 1988. 
[6] 
P. Krejci, "Hysteresis, Convexity and Dissipation in Hyperbolic Equations," Gakkotosho, Tokyo, 1996. 
[7] 
P. Krejci and A. Vladimirov, Lipschitz continuity of polyhedral Skorokhod maps, J. Analysis Appl., 20 (2001), 817844. 
[8] 
P. Krejci and A. Vladimirov, Polyhedral sweeping processes with oblique reflection in the space of regulated functions, SetValued Anal., 11 (2003), 91110. doi: 10.1023/A:1021980201718. 
[9] 
M. Kunze and M. D. P. Monteiro Marques, An introduction to Moreau's sweeping process, in "Impacts in Mechanical Systems  Analysis and Modelling," 551 of Lecture Notes in Physics, Springer, BerlinNew York, (2000), 160. 
[10] 
M. D. P. Monteiro Marques, Rafle par un convexe semicontinue inferieurement d'interieur non vide en dimension finie, C.R.Acad.Sci, Paris, Ser. I, 229 (1984), 307310. 
[11] 
M. D. P. Monteiro Marques, "Differential Inclusions in Nonsmooth Mechanical Problems Shocks and Dry Friction," Birkhauser, Basel, 1993. 
[12] 
J. J. Moreau, Evolution problem associated with a moving convex set in a Hilbert space, Journ. of Dif. Eq., 20 (1997), 347374. 
[13] 
A. A. Vladimirov, Does continuity of convexvalued maps survive under intersection?, in "Optimization and Related Topics," Kluwer Acad. Publ., (2001), 415428. 
[14] 
A. A. Vladimirov and A. F. Kleptsyn, On some hysteresis elements (Russian), Avtomat. i Telemekh., 7 (1982), 165169. 
[1] 
Dalila AzzamLaouir, Fatiha Selamnia. On statedependent sweeping process in Banach spaces. Evolution Equations and Control Theory, 2018, 7 (2) : 183196. doi: 10.3934/eect.2018009 
[2] 
Alexander Tolstonogov. BV solutions of a convex sweeping process with a composed perturbation. Evolution Equations and Control Theory, 2022, 11 (2) : 537557. doi: 10.3934/eect.2021012 
[3] 
Dmitrii Rachinskii. On geometric conditions for reduction of the Moreau sweeping process to the PrandtlIshlinskii operator. Discrete and Continuous Dynamical Systems  B, 2018, 23 (8) : 33613386. doi: 10.3934/dcdsb.2018246 
[4] 
Tan H. Cao, Boris S. Mordukhovich. Optimal control of a perturbed sweeping process via discrete approximations. Discrete and Continuous Dynamical Systems  B, 2016, 21 (10) : 33313358. doi: 10.3934/dcdsb.2016100 
[5] 
Tan H. Cao, Boris S. Mordukhovich. Optimality conditions for a controlled sweeping process with applications to the crowd motion model. Discrete and Continuous Dynamical Systems  B, 2017, 22 (2) : 267306. doi: 10.3934/dcdsb.2017014 
[6] 
Doria Affane, Meriem Aissous, Mustapha Fateh Yarou. Almost mixed semicontinuous perturbation of Moreau's sweeping process. Evolution Equations and Control Theory, 2020, 9 (1) : 2738. doi: 10.3934/eect.2020015 
[7] 
Lukáš Adam, Jiří Outrata. On optimal control of a sweeping process coupled with an ordinary differential equation. Discrete and Continuous Dynamical Systems  B, 2014, 19 (9) : 27092738. doi: 10.3934/dcdsb.2014.19.2709 
[8] 
Tan H. Cao, Boris S. Mordukhovich. Applications of optimal control of a nonconvex sweeping process to optimization of the planar crowd motion model. Discrete and Continuous Dynamical Systems  B, 2019, 24 (8) : 41914216. doi: 10.3934/dcdsb.2019078 
[9] 
Yanan Li, Zhijian Yang, Na Feng. Uniform attractors and their continuity for the nonautonomous Kirchhoff wave models. Discrete and Continuous Dynamical Systems  B, 2021, 26 (12) : 62676284. doi: 10.3934/dcdsb.2021018 
[10] 
Yejuan Wang, Peter E. Kloeden. The uniform attractor of a multivalued process generated by reactiondiffusion delay equations on an unbounded domain. Discrete and Continuous Dynamical Systems, 2014, 34 (10) : 43434370. doi: 10.3934/dcds.2014.34.4343 
[11] 
Claudianor O. Alves, M. M. Cavalcanti, Valeria N. Domingos Cavalcanti, Mohammad A. Rammaha, Daniel Toundykov. On existence, uniform decay rates and blow up for solutions of systems of nonlinear wave equations with damping and source terms. Discrete and Continuous Dynamical Systems  S, 2009, 2 (3) : 583608. doi: 10.3934/dcdss.2009.2.583 
[12] 
Ye Chen, Keith W. Hipel, D. Marc Kilgour. A multiple criteria sequential sorting procedure. Journal of Industrial and Management Optimization, 2008, 4 (3) : 407423. doi: 10.3934/jimo.2008.4.407 
[13] 
Ethan Akin. On chain continuity. Discrete and Continuous Dynamical Systems, 1996, 2 (1) : 111120. doi: 10.3934/dcds.1996.2.111 
[14] 
Yvon Maday, Ngoc Cuong Nguyen, Anthony T. Patera, S. H. Pau. A general multipurpose interpolation procedure: the magic points. Communications on Pure and Applied Analysis, 2009, 8 (1) : 383404. doi: 10.3934/cpaa.2009.8.383 
[15] 
Radoslaw Pytlak. Numerical procedure for optimal control of higher index DAEs. Discrete and Continuous Dynamical Systems, 2011, 29 (2) : 647670. doi: 10.3934/dcds.2011.29.647 
[16] 
Gilles A. Francfort, Alessandro Giacomini, Alessandro Musesti. On the Fleck and Willis homogenization procedure in strain gradient plasticity. Discrete and Continuous Dynamical Systems  S, 2013, 6 (1) : 4362. doi: 10.3934/dcdss.2013.6.43 
[17] 
Lakmi Niwanthi Wadippuli, Ivan Gudoshnikov, Oleg Makarenkov. Global asymptotic stability of nonconvex sweeping processes. Discrete and Continuous Dynamical Systems  B, 2020, 25 (3) : 11291139. doi: 10.3934/dcdsb.2019212 
[18] 
Min He. On continuity in parameters of integrated semigroups. Conference Publications, 2003, 2003 (Special) : 403412. doi: 10.3934/proc.2003.2003.403 
[19] 
Maria Colombo, Gianluca Crippa, Stefano Spirito. Logarithmic estimates for continuity equations. Networks and Heterogeneous Media, 2016, 11 (2) : 301311. doi: 10.3934/nhm.2016.11.301 
[20] 
Alexandre N. Carvalho, Jan W. Cholewa. NLSlike equations in bounded domains: Parabolic approximation procedure. Discrete and Continuous Dynamical Systems  B, 2018, 23 (1) : 5777. doi: 10.3934/dcdsb.2018005 
2021 Impact Factor: 1.497
Tools
Metrics
Other articles
by authors
[Back to Top]