Citation: |
[1] |
V. V. Anh, N .N. Leonenko and N. R. Shieh, Multifractality of products of geometric Ornstein-Uhlenbeck type processes, Adv. Appl. Prob., 40 (2008), 1129-1156.doi: 10.1239/aap/1231340167. |
[2] |
R. J. Baxter, Corner transfer matrices, Physica A, 106 (1981), 18-27.doi: 10.1016/0378-4371(81)90203-X. |
[3] |
R. J. Baxter, "Exactly Solved Models in Statistical Mechanics," Academic Press, London, 1982. |
[4] |
J. E. Besag, Spatial interaction and statistical analysis of lattice systems (with discussion), J. Roy. Statist. Soc., Series B, 36 (1974), 192-236. |
[5] |
L. Bogachev, G. Derfel, S. Molchanov and J. Ockendon, On bounded solutions of the balanced generalized pantograph equation, in "Topics in Stochastic Analysis and Nonparametric Estimation" IMA Vol. Math. Appl., 145 29-49, Springer, New York, 2008. |
[6] |
F. Champagnat, J. Idier and Y. Goussard, Stationary Markov random fields on a finite rectangular lattice, IEEE Trans. Inform. Theory, 44 (1998), 2901-2916.doi: 10.1109/18.737521. |
[7] |
F. Champagnat and J. Idier, On the correlation structure of unilateral AR processes on the plane, Adv. Appl. Prob., 32 (2000), 408-425.doi: 10.1239/aap/1013540171. |
[8] |
N. Cressie and J. L. Davidson, Image analysis with partially ordered Markov models, Comput. Stat. Data Anal., 29 (1998), 1-26. |
[9] |
T. M. Cover and J. A. Thomas, "Elements of Information Theory," 2nd ed., Wiley, Hoboken, New Jersey, 2006. |
[10] |
G. A. Derfel, Probabilistic method for a class of functional-differential equations, Ukr. Math. J., 41 (1989), 1137-1141. |
[11] |
V. Elser, Solution of the dimer problem on a hexagonal lattice with boundary, J. Phys. A: Math. Gen., 17 (1984), 1509-1513. |
[12] |
M. E. Fisher, Statistical mechanics of dimers on a plane lattice, Phys. Rev., 124 (1961), 1664-1672. |
[13] |
M. Fisher and H. Temperley, The dimer problem in statistical mechanics - an exact result, Phil. Mag., 6 (1961), 1061-1063. |
[14] |
U. Frisch, "Turbulence: the Legacy of A. N. Kolmogorov," Cambridge University Press, Cambridge, 1995. |
[15] |
I. I. Gikhman and A. V. Skorokhod, "The Theory of Stochastic Processes," Springer, Berlin, 2004. |
[16] |
J. K. Goutsias, Mutually compatible Gibbs random fields, IEEE Trans. Inform. Theory, 35 (1989), 1233-1249. |
[17] |
R. M. Gray, "Entropy and Information Theory," Springer-Verlag, New York, 1990. |
[18] |
R. Hayn and V. N. Plechko, Grassmann variable analysis for dimer problems in two dimensions, J. Phys. A: Math. Gen., 27 (1994), 4753-4760. |
[19] |
R. A. Horn and C. R. Johnson, "Matrix Analysis," Cambridge University Press, New York, 2007. |
[20] |
J. M. Hammersley and V. V. Menon, A lower bound for the monomer-dimer problem, IMA J. Appl. Maths., 6 (1970), 341-364. |
[21] |
K. Huang, "Statistical Mechanics," 2nd ed., John Wiley & Sons, New York, 1987. |
[22] |
J. Idier and Y. Goussard, "Champs de Pickard tridimensionnels," Tech. Rep., IGB/GPI-LSS, 1999, http://www.irccyn.ec-nantes.fr/~idier/pub/idier99d.pdf. |
[23] |
L. Isserlis, On a formula for the product-moment coefficient of any order of a normal frequency distribution in any number of variables, Biometrika, 12 (1918), 134-139. |
[24] |
S. Janson, "Gaussian Hilbert Spaces,'' Cambridge University Press, Cambridge, 1997. |
[25] |
P. W. Kasteleyn, The statistics of dimers on a lattice I. The number of dimer arrangements on a quadratic lattice, Physica, 27 (1961), 1209-1225.doi: 10.1016/0031-8914(61)90063-5. |
[26] |
T. Kato and J. B. McLeod, The functional-differential equation $y'(x) = ay(\lambda x) + by(x)$, Bull. Amer. Math. Soc., 77 (1971), 891-937. |
[27] |
C. Kenyon, D. Randall and A. Sinclair, Approximating the number of monomer-dimer coverings of a lattice, J. Stat. Phys., 83 (1996), 637-659.doi: 10.1007/BF02183743. |
[28] |
V. Kozyakin, N. Kuznetsov, A. Pokrovskii and I. Vladimirov, Some problems in analysis of discretizations of continuous dynamical systems, Nonlin. Anal., Theor. Meth. Appl., 30 (1997), 767-778. |
[29] |
E. H. Lieb, Solution of the dimer problem by the transfer matrix method, J. Math. Phys., 8 (1967), 2339-2341. |
[30] |
M. Loebl, On the dimer problem and the Ising problem in finite 3-dimensional lattices, Electr. J. Combinator., 9 (2002), 1-25. |
[31] |
K. Mahler, On a special functional equation, J. London Math. Soc., 15 (1940), 115-123.doi: 10.1112/jlms/s1-15.2.115. |
[32] |
P. Malliavin, "Integration and Probability," Springer-Verlag, New York, 1995.doi: 10.1007/978-1-4612-4202-4. |
[33] |
P. Malliavin, "Stochastic Analysis," Springer, Berlin, 1997. |
[34] |
N. F. G. Martin and J. W. England, "Mathematical Theory of Entropy," Addison-Wesley, Reading, Mass., 1981. |
[35] |
P.-A. Meyer, "Quantum Probability for Probabilists," 2nd ed., Springer, Berlin, 1995. |
[36] |
U. U. Müller, A. Schick and W. Wefelmeyer, Inference for alternating time series, in: "Recent Advances in Stochastic Modeling and Data Analysis'' (ed. C. H. Skiadas), World Scientific, Singapore, (2007), 589-596. |
[37] |
D. K. Pickard, A curious binary lattice process, J. Appl. Prob., 14 (1977), 717-731.doi: 10.2307/3213345. |
[38] |
D. K. Pickard, Unilateral Markov fields, Adv. Appl. Prob., 12 (1980), 655-671.doi: 10.2307/1426425. |
[39] |
A. V. Pokrovskii, A. J. Kent and J. G. McInerney, Mixed moments of random mappings and chaotic dynamical systems, Proc. R. Soc. Lond. A, 456 (2000), 2465-2487.doi: 10.1098/rspa.2000.0621. |
[40] |
H. Rue and L. Held, "Gaussian Markov Random Fields," Chapman & Hall, 2006. |
[41] |
D. Ruelle, "Thermodynamic Formalism," 2nd ed., Cambridge University Press, Cambridge, 2004. |
[42] |
J. J. Sakurai, "Modern Quantum Mechanics," Addison-Wesley, Reading, Mass., 1994. |
[43] |
A. N. Shiryaev, "Probability," 2nd ed., Springer, New York, 1995. |
[44] |
V. Spiridonov, Universal superpositions of coherent states and self-similar potentials, Phys. Rev. A, 52 (1995), 1909-1935.doi: 10.1103/PhysRevA.52.1909. |
[45] |
E. M. Tory and D. K. Pickard, Unilateral Gaussian fields, Adv. Appl. Prob., 24 (1992), 95-112.doi: 10.2307/1427731. |
[46] |
I. Vladimirov, "Quantized Linear Systems on Integer Lattices: Frequency-Based Approach," Center for Applied Dynamical Systems and Environmental Modeling, Deakin University, Geelong, Victoria, Australia, CADSEM Reports 96-032 (1996), 1-37; 96-033 (1996), 1-50. |
[47] |
I. Vladimirov, N. Kuznetsov and P. Diamond, Frequency measurability, algebras of quasiperiodic sets and spatial discretizations of smooth dynamical systems, Math. Comp. Simul., 52 (2000), 251-272.doi: 10.1016/S0378-4754(00)00154-3. |