\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

The monomer-dimer problem and moment Lyapunov exponents of homogeneous Gaussian random fields

Abstract Related Papers Cited by
  • We consider an "elastic'' version of the statistical mechanical monomer-dimer problem on the $n$-dimensional integer lattice. Our setting includes the classical "rigid'' formulation as a special case and extends it by allowing each dimer to consist of particles at arbitrarily distant sites of the lattice, with the energy of interaction between the particles in a dimer depending on their relative position. We reduce the free energy of the elastic dimer-monomer (EDM) system per lattice site in the thermodynamic limit to the moment Lyapunov exponent (MLE) of a homogeneous Gaussian random field (GRF) whose mean value and covariance function are the Boltzmann factors associated with the monomer energy and dimer potential. In particular, the classical monomer-dimer problem becomes related to the MLE of a moving average GRF. We outline an approach to recursive computation of the partition function for "Manhattan'' EDM systems where the dimer potential is a weighted $l_1$-distance and the auxiliary GRF is a Markov random field of Pickard type which behaves in space like autoregressive processes do in time. For one-dimensional Manhattan EDM systems, we compute the MLE of the resulting Gaussian Markov chain as the largest eigenvalue of a compact transfer operator on a Hilbert space which is related to the annihilation and creation operators of the quantum harmonic oscillator and also recast it as the eigenvalue problem for a pantograph functional-differential equation.
    Mathematics Subject Classification: Primary: 60G60, 60G15, 60C05, 60J57, 37H15; Secondary: 37D35, 82B20, 82B31, 60J22.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    V. V. Anh, N .N. Leonenko and N. R. Shieh, Multifractality of products of geometric Ornstein-Uhlenbeck type processes, Adv. Appl. Prob., 40 (2008), 1129-1156.doi: 10.1239/aap/1231340167.

    [2]

    R. J. Baxter, Corner transfer matrices, Physica A, 106 (1981), 18-27.doi: 10.1016/0378-4371(81)90203-X.

    [3]

    R. J. Baxter, "Exactly Solved Models in Statistical Mechanics," Academic Press, London, 1982.

    [4]

    J. E. Besag, Spatial interaction and statistical analysis of lattice systems (with discussion), J. Roy. Statist. Soc., Series B, 36 (1974), 192-236.

    [5]

    L. Bogachev, G. Derfel, S. Molchanov and J. Ockendon, On bounded solutions of the balanced generalized pantograph equation, in "Topics in Stochastic Analysis and Nonparametric Estimation" IMA Vol. Math. Appl., 145 29-49, Springer, New York, 2008.

    [6]

    F. Champagnat, J. Idier and Y. Goussard, Stationary Markov random fields on a finite rectangular lattice, IEEE Trans. Inform. Theory, 44 (1998), 2901-2916.doi: 10.1109/18.737521.

    [7]

    F. Champagnat and J. Idier, On the correlation structure of unilateral AR processes on the plane, Adv. Appl. Prob., 32 (2000), 408-425.doi: 10.1239/aap/1013540171.

    [8]

    N. Cressie and J. L. Davidson, Image analysis with partially ordered Markov models, Comput. Stat. Data Anal., 29 (1998), 1-26.

    [9]

    T. M. Cover and J. A. Thomas, "Elements of Information Theory," 2nd ed., Wiley, Hoboken, New Jersey, 2006.

    [10]

    G. A. Derfel, Probabilistic method for a class of functional-differential equations, Ukr. Math. J., 41 (1989), 1137-1141.

    [11]

    V. Elser, Solution of the dimer problem on a hexagonal lattice with boundary, J. Phys. A: Math. Gen., 17 (1984), 1509-1513.

    [12]

    M. E. Fisher, Statistical mechanics of dimers on a plane lattice, Phys. Rev., 124 (1961), 1664-1672.

    [13]

    M. Fisher and H. Temperley, The dimer problem in statistical mechanics - an exact result, Phil. Mag., 6 (1961), 1061-1063.

    [14]

    U. Frisch, "Turbulence: the Legacy of A. N. Kolmogorov," Cambridge University Press, Cambridge, 1995.

    [15]

    I. I. Gikhman and A. V. Skorokhod, "The Theory of Stochastic Processes," Springer, Berlin, 2004.

    [16]

    J. K. Goutsias, Mutually compatible Gibbs random fields, IEEE Trans. Inform. Theory, 35 (1989), 1233-1249.

    [17]

    R. M. Gray, "Entropy and Information Theory," Springer-Verlag, New York, 1990.

    [18]

    R. Hayn and V. N. Plechko, Grassmann variable analysis for dimer problems in two dimensions, J. Phys. A: Math. Gen., 27 (1994), 4753-4760.

    [19]

    R. A. Horn and C. R. Johnson, "Matrix Analysis," Cambridge University Press, New York, 2007.

    [20]

    J. M. Hammersley and V. V. Menon, A lower bound for the monomer-dimer problem, IMA J. Appl. Maths., 6 (1970), 341-364.

    [21]

    K. Huang, "Statistical Mechanics," 2nd ed., John Wiley & Sons, New York, 1987.

    [22]

    J. Idier and Y. Goussard, "Champs de Pickard tridimensionnels," Tech. Rep., IGB/GPI-LSS, 1999, http://www.irccyn.ec-nantes.fr/~idier/pub/idier99d.pdf.

    [23]

    L. Isserlis, On a formula for the product-moment coefficient of any order of a normal frequency distribution in any number of variables, Biometrika, 12 (1918), 134-139.

    [24]

    S. Janson, "Gaussian Hilbert Spaces,'' Cambridge University Press, Cambridge, 1997.

    [25]

    P. W. Kasteleyn, The statistics of dimers on a lattice I. The number of dimer arrangements on a quadratic lattice, Physica, 27 (1961), 1209-1225.doi: 10.1016/0031-8914(61)90063-5.

    [26]

    T. Kato and J. B. McLeod, The functional-differential equation $y'(x) = ay(\lambda x) + by(x)$, Bull. Amer. Math. Soc., 77 (1971), 891-937.

    [27]

    C. Kenyon, D. Randall and A. Sinclair, Approximating the number of monomer-dimer coverings of a lattice, J. Stat. Phys., 83 (1996), 637-659.doi: 10.1007/BF02183743.

    [28]

    V. Kozyakin, N. Kuznetsov, A. Pokrovskii and I. Vladimirov, Some problems in analysis of discretizations of continuous dynamical systems, Nonlin. Anal., Theor. Meth. Appl., 30 (1997), 767-778.

    [29]

    E. H. Lieb, Solution of the dimer problem by the transfer matrix method, J. Math. Phys., 8 (1967), 2339-2341.

    [30]

    M. Loebl, On the dimer problem and the Ising problem in finite 3-dimensional lattices, Electr. J. Combinator., 9 (2002), 1-25.

    [31]

    K. Mahler, On a special functional equation, J. London Math. Soc., 15 (1940), 115-123.doi: 10.1112/jlms/s1-15.2.115.

    [32]

    P. Malliavin, "Integration and Probability," Springer-Verlag, New York, 1995.doi: 10.1007/978-1-4612-4202-4.

    [33]

    P. Malliavin, "Stochastic Analysis," Springer, Berlin, 1997.

    [34]

    N. F. G. Martin and J. W. England, "Mathematical Theory of Entropy," Addison-Wesley, Reading, Mass., 1981.

    [35]

    P.-A. Meyer, "Quantum Probability for Probabilists," 2nd ed., Springer, Berlin, 1995.

    [36]

    U. U. Müller, A. Schick and W. Wefelmeyer, Inference for alternating time series, in: "Recent Advances in Stochastic Modeling and Data Analysis'' (ed. C. H. Skiadas), World Scientific, Singapore, (2007), 589-596.

    [37]

    D. K. Pickard, A curious binary lattice process, J. Appl. Prob., 14 (1977), 717-731.doi: 10.2307/3213345.

    [38]

    D. K. Pickard, Unilateral Markov fields, Adv. Appl. Prob., 12 (1980), 655-671.doi: 10.2307/1426425.

    [39]

    A. V. Pokrovskii, A. J. Kent and J. G. McInerney, Mixed moments of random mappings and chaotic dynamical systems, Proc. R. Soc. Lond. A, 456 (2000), 2465-2487.doi: 10.1098/rspa.2000.0621.

    [40]

    H. Rue and L. Held, "Gaussian Markov Random Fields," Chapman & Hall, 2006.

    [41]

    D. Ruelle, "Thermodynamic Formalism," 2nd ed., Cambridge University Press, Cambridge, 2004.

    [42]

    J. J. Sakurai, "Modern Quantum Mechanics," Addison-Wesley, Reading, Mass., 1994.

    [43]

    A. N. Shiryaev, "Probability," 2nd ed., Springer, New York, 1995.

    [44]

    V. Spiridonov, Universal superpositions of coherent states and self-similar potentials, Phys. Rev. A, 52 (1995), 1909-1935.doi: 10.1103/PhysRevA.52.1909.

    [45]

    E. M. Tory and D. K. Pickard, Unilateral Gaussian fields, Adv. Appl. Prob., 24 (1992), 95-112.doi: 10.2307/1427731.

    [46]

    I. Vladimirov, "Quantized Linear Systems on Integer Lattices: Frequency-Based Approach," Center for Applied Dynamical Systems and Environmental Modeling, Deakin University, Geelong, Victoria, Australia, CADSEM Reports 96-032 (1996), 1-37; 96-033 (1996), 1-50.

    [47]

    I. Vladimirov, N. Kuznetsov and P. Diamond, Frequency measurability, algebras of quasiperiodic sets and spatial discretizations of smooth dynamical systems, Math. Comp. Simul., 52 (2000), 251-272.doi: 10.1016/S0378-4754(00)00154-3.

  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(170) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return